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Review of WAMIT Version 6.3



1  Control surface option for mean drift  force
All six components of the mean drift forces and moments, on a 
single body or on each body in the multiple body interaction, are 
evaluated from the momentum flux through the control surface 
surrounding each body. The computational results are more robust
than the pressure integration when the body surface is not smooth, 
especially for bodies with sharp corners.
(details in a separate presentation below)

2  Paddle wavemakers
A special option can be used to efficiently analyze the wave field
generated by one or more wavemakers situated in planes of
symmetry. (details in a separate presentation below) 



3   Vertical hinge modes:
The DLL library file NEWMODES has been extended to include 
generalized mode to represent vertical modes of a vessel with 
hinges.  (Details in Newman 1998, “Wave effects on hinged bodies. 
Part 1-4”)

Application may include the deck supported by vessels with hinges
(right) as well as vessels connected by hinges (left). 



Use of option of vertical hinged modes:

a) All vessels and structures are considered as one body.  One GDF describes all wetted
surface.

b) In addition to 6 rigid body modes, additional modes as many as the number of the 
hinges (NEWMDS) are considered. NEWMDS should be specified in POT file.

c) XHINGE.DAT (in the directory the program is running)
Header        (description of the file)
ISX, NSEG  (symmetry index about x=0, number of segments = number of hinges + 1)    
XH array      (x coordinates of lower and upper limits of each segments)

When ISX=0, XH contains the x coordinates of the hinges and the lower and
upper limits  of x coordinates of the body surface in ascending order. 

When ISX=1, x coordinates of the hinges on the positive side of x axis and 
the upper limit x coordinate of the should be specified in XH array in ascending order. 

(Hinge axis is assumed to be parallel to y axis of the body coordinates system. In order
to change this convention, user must modify NEWMODES.)



d) Mass matrix in FRC. 

The inertia associated with vertical hinge modes can be evaluated from 
the integral in x of the product of 

m(x) Zi(x) Zk (x)

m(x) is sectional mass and Zi(x) is vertical displacement representing the
shape of the hinge modes or vertical displacement of rigid body modes
(heave and pitch) at x.

The products among the hinge modes and the products between hinge modes
and rigid modes should be evaluated in this manner.  This is to be combined
with the inertia for the rigid modes (6x6) to have the complete mass 
matrix in FRC. 

In NEWMODES, the hinge modes are described in the sequence shown below.
All hinge modes have unit vertical displacement (|Zi(x)| < =1) in NEWMODES .



XHINGE.DAT
4 hinges & NSEG=5,  ISX=0, NEWMDS=4
0  5   (ISX, NSEG)
-2.5 -1.5 -0.5 0.5 1.5 2.5  (XH) 

x
-2 -1 0 1 2

1

2

3

4



XHINGE.DAT
4 hinges & NSEG=5,  ISX=1, NEWMDS=4
1  5    (ISX, NSEG)
0.5 1.5 2.5  (XH)

x
-2 -1 0 1 2

1

2

3

4



x
-2 -1 0 1 2

1

2

3

XHINGE.DAT
3 hinges & NSEG=4,  ISX=1, NEWMDS=3
1  4  (ISX, NSEG) 
1  2  (XH)



4  Hydrostatic coefficients matrix:

A supplementary HST output file is created to output the hydrostatic 
matrix of restoring coefficients, including generalized modes. 

When internal tanks are present, the effect of the internal tanks is 
included in the hydrostatic coefficient output. These output can be 
used with the hydrodynamic coefficients, which also include the 
effect of the internal tanks, for the motion analysis outside WAMIT.

As in previous versions, the hydrostatic matrix of restoring 
coefficients of rigid body modes of the hull, without the effect of the 
internal tanks, are output, along with the some components of the 
hydrostatic coefficients of the internal tanks, in OUT file.



Body

Use NFIELD_ARRAYs

Close to the body, use XFIELD arrays

5 Uniform arrays of field points can be input in a more
convenient manner.



FRC (Force control file)
.
NFIELD 
XFIELD(1,1)   XFIELD(2,1)   XFIELD(3,1) 
XFIELD(1,2)   XFIELD(2,2)   XFIELD(3,2) 
. 
XFIELD(1,NFIELD)   XFIELD(2,NFIELD)   XFIELD(3,NFIELD)   

NFIELD_ARRAYS

ITANKFLD(1)
NFX(1)  X1(1)  DELX(1)
NFY(1)  Y1(1)  DELY(1)
NFZ(1)  Z1(1)  DELZ(1)

ITANKFLD(2)
NFX(2)  X1(2)  DELX(2)
NFY(2)  Y1(2)  DELY(2)
NFZ(2)  Z1(2)  DELZ(2)

.

.



6   A symmetry plane can be used when there are flat dipole elements 
on the plane of symmetry for more efficient computation. (Example 
below shows the required geometric data, for a cylinder with fins on 
x=0 and y=0 axis.)

V6.2

ISX=0, ISY=0

V6.3

ISX=1, ISY=1



7 The DLL library file GEOMXACT has been extended to include
several new analytical geometries for GDF (body geometry) and
CSF (control surface).



Errors fixed in Version 6.3:
When IPNLBPT/=0 for symmetric body, the pressure/velocity on reflected quadrants 
or half can be incorrect and the pressure mean drift forces can be incorrect.

When IPNLBPT/=0, pressure can be incorrect when the points are near the 
intersection of normal and dipole panels when low-order method is used.

Hydrostatic restoring force due to internal tank can be incorrect. This affects, RAO, 
body/field pressure/velocity and mean forces.

The fluid velocity on tank wall is incorrect when IDIFF>-1 in low-order method. This 
also affects pressure mean drift forces.

The pressure mean drift forces/moments in heave, roll and pitch are incorrect when 
the vertical positions of tank free surfaces are different from the free surface.

The output may be incorrect with the presence of tanks in the low-order method when 
IRR=2 option is used

Impulse response functions for the radiation pressure/velocity on the body and field 
points are not correctly evaluated in F2T.



Use of control surface option 
for mean drift forces



In V6.3, the mean drift forces can be evaluated from the momentum 
flux through a control surface surrounding each body. The preparation
of input and the use of this option is described below.

1. New input parameters and output file
2. CSF (control surface file)
3. Alternatives 1 and 2
4. Example 1 – sphere  & cylinder 
5. Example 2 – barge created by MultiSurf (test20)
6. Example 3 – body with non-vertical wall
7. Example 4 – body with dipole element
8. Summary



1. New input parameters and output file

INPUT:
a)  ICTRSURF=1 or ICTRSURF=2 should be specified in Configuration

file (CFG).  ICTRSURF specifies one of two Alternatives for 
integrating the momentum flux over the control surface

b) IOPTEN(9) > 0  in Force control file (FRC)

c) The surface geometry of the control surface should be input in a file 
with the filename same as GDF and extension CSF (gdf.CSF).

OUTPUT:
The mean forces using control surface are output in IOPTN.9c 
The pressure mean forces are output in IOPTN.9



2. CSF (control surface file)

CSF describes the control surface surrounding each body. The format of the file
is similar to GDF (all of the geometry definitions in GDF can be used in CSF).

Low order format:
GDF:                                                          CSF:
Header                                                       Header                                       
ULEN GRAV                                              0 (ILOWHICSF)
ISX ISY                                                      ISXCSF ISYCSF
NEQN                                                        NEQN
XVER array                                              XVER array

Higher order format
GDF:                                                          CSF:
Header                                                       Header
ULEN GRAV                                              1 (ILOWHICSF)
ISX ISY                                                      ISXCSF ISYCSF
NPATCH IGDEF                                        NPATCSF ICDEF PSZCSF 



a) control surface includes the free surface and SC and SF are input in CSF. CL and WL are found in
WAMIT and are not part of the input.

b) the convention for normal vector is the same in CSF and GDF. Panel vertices are in counter
-clockwise direction for ILOWHICSF=0 and the normal vector points inward for ILOWHICSF=1.

c) arbitrary combination of ILOWHI and ILOWHCSF can be used. (ILOWHI=0 and ILOWHICSF=1 is 
ok. But the intersection between body and free surface may be inaccurately described. 

d) horizontal forces and yaw moment can be evaluated without free surface in alternative 1 
method and the intersection problem in c) is not a concern 

CL
SF WL

SC



Alternatives 1 and 2
A) For horizontal momentum (surge, sway, yaw)

Two alternatives are equivalent but different in the way to evaluate momentum on the free surface.  
In alternative 1, the horizontal momentum is evaluated only on CL, while in alternative 2  on SF and WL.
Robust evaluation of momentum on SF near the waterline and WL requires more refined description 
on the body near the waterline and less efficient than the evaluation  on CL.  

B) For vertical momentum (heave, roll, pitch)
Two alternatives are identical and require SF in CSF.

Alternative 1 should be used in most cases: a) more efficient  b) SF not required in CSF 
for the horizontal momentum. Alternative 2 option may be used for such exceptional case 
as two vessels with a lid in-between. Without no or little gap between the body and CL,  
as shown below, Alternative 1 can not be applied.



Example 1 – sphere  & cylinder
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With no gap between CL and WL, alternative 2 must be used.

KR
D
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Alternative 2 method for a sphere.
Results suggest more refined soltuion on the body near the waterline
for accurate evalutation of the flux on the control surface near the waterline.



Example 2 – barge created by MultiSurf (test20)

Barge
length 100m, beam 20m, draft 4.8m

Control Surface (Box without free surface. Good for horizontal forces and yaw moment by Alternative 1)
lengh 120m, beam 30m, draft 10m
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Example 3 – body with non-vertical wall

Skewed hemisphere with radius 1 on the free surface
Control surface: radius and draft 1.2
Mesh is the higher-order panels
4th order Gauss quadrature on the control surface
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7. Example 4 – body with dipole element

When ILOWHI=1, control surface option can be applied for bodies with dipole elements
when they are submerged or intersect the free surface perpendicularly (exceptions are
surge and sway forces and yaw moment when evaluated by Alternative 1. They are
not subject to this restriction).

Example shown here is the spar with strakes in Test 21.
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Summary

A) Control surface method was implemented to provide an optional method  when the
traditional momentum or pressure mean forces are not available or not robustly
evaluated as shown in the examples

B) The control surface mean force is as accurate as the momentum mean force
for practical purpose.

C) The run time of FORCE module is same order as POTEN module and could be
longer. But overall computational time can be reduced because POTEN run does 
not require fine discretization as was the case for pressure mean forces.

D) CSF must be prepared. All available GDF can be easily converted into CSF but the
free surface part of the control surface have to be included for vertical momentum. 
For horizontal momentum, a few generic geometry such as rectangular box should be
sufficient.

E) The effect of the tank is added in the same manner as the conventional pressure
mean forces, by integrating the quadratic pressure inside the tank surface.



Radiated Wave Field From a Bank of 

Wavemakers (Test23)

By J. N. Newman



V6.3 includes a new option, motivated by 
John O’Dea for a project to design new 
wavemakers for the basin at Carderock.  
The proposed wavemakers are rectangular 
flaps, located in the planes of two adjacent 
tank walls (at right angles).  The number of 
individual wavemakers is large.  The 
principal interest is to predict the radiated 
wavefield at a large number of field points.



X Y

Z

8 wavemakers in the wall x=0

Wavemaker width/depth = 1m by 2m

Wavemakers are hinged about z=-2m

Water depth = 4m



The `conventional’ approach using WAMIT 
would require that a small thickness be 
added to each wavemaker, thus it would 
protrude from the wall.  From theory we 
know there is a simpler solution, with 
sources of known strength (proportional to 
the normal velocity) in the plane of the 
wavemaker.



Computational Approach

• Represent geometry by low- or higher-order 
panels/patches (wet side only)

• Set up RHS of linear system (source strength)
• Set velocity potential = 0 on body surface, and 

skip solution of linear system (ISOLVE=-1)
• Only radiation modes are considered, no 

incident waves or diffraction. 
• Supported outputs include only options 6&7 

(wave elevations, pressures, fluid velocities)
• No other bodies can be present in the fluid 

domain
• Other walls are open boundaries



• For details see User Manual Section 10.8 
and Test23

• New option for rectangular arrays of field 
points (Section 3.10) simplifies input data 
for large numbers of field points



Evaluation of quadratic forces in bi-
chromatic waves using control surfaces



The total force on the body

�F = −ρ

∫∫
sb

�n[Φt +
1
2
∇Φ · ∇Φ + gz]ds

can be expressed in terms of the momentum flux over sc, sf , hydrostatic

forces on sb and − ¯dP/dt, negative rate of change of the momentum in
the volume inside sbfc

�F = ρ

∫∫
sc

[(Φt +
1
2
∇Φ · ∇Φ)�n − ∂Φ

∂n
∇Φ]ds

+ ρ

∫∫
sf

(Φt +
1
2
∇Φ · ∇Φ)�nds − ρg

∫∫
sb

z�nds − dP
dt

For monochromatic waves, the time average of
d̄P
dt

= 0 and the mean
forces are obtained from the quadratic terms of the momentum flux.



For bichromatic waves, the change of momentum in the volume should
be added. Expressed in terms of momentum flux on sbfc, it takes a form

dP(t)
dt

= ρ
d

dt

∫∫∫
�V dv = ρ

∫∫
sbfc

[Φt�n + ∇Φ(�U · �n)]ds

The quadratic components about the mean surface takes a form

dP(2)(t)
dt

= ρ

∫∫
Sb

φt(�α × �n) + (�Ξ · ∇φt)�n + ∇φ(�Ξt · �n)ds + ρ

∫
W

(ζ − Ξ3)φt�n
′dl

+ ρ

∫ ∫
Sf

∇φ
∂φ

∂n
+ ζ

∂φt

∂z
�k − ζ∇′φtds + ρ

∫
W

φt(�Ξ · �n′)dl

+ ρ

∫
C

ζφt�n
′dl



Using the relations

1
2
ρ

∫
W+C

�n′ζφtdl = ρ

∫ ∫
Sf

ζ∇′φtds

and∫
W

φt[(�Ξ · �n′)�k − Ξ3�n
′]dl +

∫ ∫
Sb

φt(�α × �n)ds =
∫ ∫

Sb

[(�Ξ · �n)∇φt − �n(�Ξ · ∇φt)]ds

the rate of momentum change can be simplified in the form

dP(2)(t)
dt

= ρ

∫ ∫
Sf

[∇φ
∂φ

∂n
+ ζ∇φt]ds + ρ

∫ ∫
Sb

[∇φ(
d�Ξ
dt

· �n) + (Ξ · �n)∇φt]ds



The quadratic force in bichromatic waves is then obtained from

�F (2) = − 1
2

ρ

g

∫
C

�n′φ2
t dl − ρg

∫
W

[ζ(�Ξ · �n′)]�kdl

− ρ

∫ ∫
Sc

[∇φ
∂φ

∂n
− 1

2
�n(∇φ · ∇φ)]ds

+ ρ�k

∫ ∫
Sf

(ζ
∂φt

∂z
+

1
2
∇φ · ∇φ)ds + �F

(2)
S

− ρ

∫ ∫
Sf

[∇φ
∂φ

∂n
+ ζ∇φt]ds − ρ

∫ ∫
Sb

[∇φ(
d�Ξ
dt

· �n) + (Ξ · �n)∇φt]ds
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Summary

1. An expression for quadratic forces in terms of the momentum flux on Control 
Surface is derived. Unlike the mean drift forces, the expression also 
includes the quadratic pressure on the body which is linearly proportional 
to the fluid velocity. 

2. The computational results for a sphere and a truncated cylinder indicate the 
expression calculates the forces more efficiently and consistently than 
conventional pressure integral. 

3. Unlike the mean forces, the free surface should be included in CSF even for    
the horizontal forces and yaw moment



Progress for WAMIT V6.3S 



Extensions were made for the evaluation of quadratic forces.

a) Internal tanks
b) Flexible lids on the free surface
c) Control surface option

Current work on V6.3S

a) internal tanks for complete 2nd-order solution
b) B-spline fitting of the pressure and velocity on the free surface

for efficient evaluation of the free surface forcing in 
the higher-order method



Illustrative example - quadratic force on a vessel with 4 tanks
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Using WAMIT with trimmed 
waterlines

By J. N. Newman



During a visit with John Letcher he 
indicated the interest of Petrobras and São
Paulo in running WAMIT with different 
waterlines (floatation planes), without the 
need to re-discretize the body for each 
waterline.  (Work on this started after the 
release of V6.3.)  

Background



General Approach

• Body geometry must be defined up to at least the plane 
of the free surface, and may extend above this plane

• Geometry, and hydrodynamic outputs, are defined 
relative to conventional body-fixed coordinates

• New parameter ITRIMWL=0 (default) or 1 in config file
• New array XTRIM in config file, specifying the vertical 

displacement (heave) and trim (pitch, roll) relative to the 
origin of the body coordinates.  (Pitch, roll are Euler 
angles, in that order.)

• WAMIT trims the waterline, including only the portion of 
the geometry below Z=0 (global plane of free surface)

• Details are different for low-order panels and higher-
order patches



Low-order Approach (ILOWHI=0)

• First check all panels, eliminate `dry panels’ and modify 
waterline panels which span Z=0: 

• Case 1: waterline intersects two opposite sides of a 
quadrilateral panel – simply lower the top vertices down 
to the waterline

• Case 2: waterline intersects two adjacent sides with a 
triangular submerged portion – same approach, with a 
triangular wet panel

• Case 3: waterline intersects two adjacent sides with a 5-
sided submerged portion: this must be subdivided into 
two new panels 

• NEQN is reduced for dry panels, increased for Case 3



TEST07
(draft=35m)

XTRIM= 17.5, 10, 10



XTRIM=150 30 0

TEST09.GDF
(draft=200m)



XTRIM(1)= 1.0 10 0

XTRIM(2)= 0.1 0 0

TEST05



Higher-order Approach (ILOWHI=1)

• First check all patches, eliminate if `dry’ and tag 
waterline patches which span Z=0

• For waterline patches the computational domain 
(parametric) (U,V)=(-1,1) is mapped to the 
submerged portion of the patch

• If submerged portion is `triangular’, a singular 
point is introduced at the submerged vertex

• If submerged portion is `5-sided’ a weak singular 
point is introduced at the knuckle between the 
waterline and patch side

• NPATCH is reduced for dry panels



XTRIM(1)= 0 0 0

XTRIM(2)= 0 0 0

XTRIM(1)= 1.0 10 0

XTRIM(2)= 0.1 0 0



X
Y

Z

X T R IM = 0 .5 0 0

X
Y

Z

X T R IM = 0 .5 2 5 0





Special Points
• If  ITRIMWL=1 the error message regarding panel/patch 

vertices above the free surface is disabled 
• IRR=1 requires user to represent interior free surface 

(awkward)
• IRR=2  (projection of panels onto free surface) may be 

affected by pitch and roll displacements 
• Angular displacements may affect symmetry.  WAMIT 

automatically reflects when this is necessary, as in the 
TLP example.

• Internal tank waterlines are not trimmed. Special 
attention is required for tank free surface if angular 
displacements are included.

• Trimming of higher-order patches could fail if the trace of 
the waterline is irregular in parametric space



Status

• Low-order has been tested with good 
results 

• Higher-order still being debugged
• Expect to include in V6.4 
• Beta version can be released to 

Consortium Members on request
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On the evaluation of quadratic forces on stationary

bodies

Chang-Ho Lee
WAMIT Inc., Chestnut Hill MA, USA

October 15, 2006

Abstract. Conservation of momentum is applied to finite fluid volume surround-
ing a body and enclosed by the control surface in order to obtain expressions for
all components of quadratic forces and moments acting on the body in terms of
the momentum flux and the change of the momentum in the fluid volume. It is
shown that the expressions derived are essentially identical with those obtained by
a complementary approach in [1] where the pressure integrals on the body surface are
tranformed into the integrals on the control surface using various vector theorems.
Computational results are presented limited to the mean drift forces to illustrate
the advantages of using control surfaces.

Keywords: control surface, mean drift force, momentum conservation, pressure
integration, quadratic force

1. Introduction

The second-order quadratic forces contribute to the excitation at low or
high frequencies than those of incident waves which may be important
for the analysis of structures with certain resonance features such as
moored vessels and Tension Leg Platforms. They are also important
for the analysis of drift motion of vessels which can be of particular
concern when the vessels operate in the proximity of other structures.
For certain structures such as ships and spars, it is of interest to have
accurate prediction of slowly varying roll and pitch loads.

The quadratic forces can be evaluated by the integration of fluid
pressure over the instantaneous wetted surface as shown in [2], [3], [4]
and [5]. As a special case, the horizontal mean drift force and vertical
moment can also be evaluated from the momentum conservation prin-
ciple applied to the entire volume of fluid as shown in [6] and [7]. Other
than this special case, the computational result of the quadratic pres-
sure forces is generally less accurate than that of the first order forces.
Thus it requires significantly more refined descritization entailing in-
creased computing time. This is because of the evaluation of the fluid
velocity, which contributes to the quadratic forces, is less accurate than
the pressure on the body surface. When the body has sharp corners, the
quadratic pressure near the corner is singular, though integrable, and it

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Chang-Ho Lee

renders the computational result significantly inaccurate. Nonuniform
discretization near the corner in the low order method [8], or nonuni-
form mapping in the higher order method [9] do produce more accurate
results than otherwise. However the computational results can still be
inaccurate especially when the bodies experience large motion.

In order to overcome this difficulty, Ferreira and Lee [10] applied
momentum conservation over finite fluid volume surrounding the struc-
tures. All components of mean drift forces and moments on the body
are obtained from the momentum flux through the control surface en-
closing the fluid volume without the hydrodynamic pressure integration
over the body surface. The computational results are significantly more
accurate than the pressure integration. Recently Dai et al. [1] derived
expressions for the quadratic forces and moments by transforming the
pressure integration over the body surface into those on the control
surface. One obvious advantage of these expressions is that the fluid
velocity is not required on the body surface when body is fixed. Also
the quadratic of the fluid velocity, which is most singular when body
has sharp corners, in the pressure integration is not present in the new
expressions having only linear terms in the fluid velocity.

In the following, we consider the conservation of momentum in the
finite fluid volume surrounding a body and obtain the expressions for
all components of quadratic forces and moments including complete
mean drift forces and moments considered in [10]. It is shown that
these expressions are equivalent to those obtained by a complementary
approach in [1]. Computational results are presented for the mean drift
forces to illustrate the advantage of present expressions.

2. Formulation

A potential flow is assumed which is governed by the velocity potential
Φ(~x, t). The fluid pressure follows from Bernoulli’s equation in the form

p(~x, t) = −ρ(Φt +
1
2
∇Φ · ∇Φ + gz) (1)

where ρ is the fluid density and g is gravity. ~x = (x, y, z) is the co-
ordinates in a space-fixed Cartesian coordinate system with positive
z pointing upward, perpendicular to the undisturbed free surface. t
denotes time.

The forces on the body are then obtained from

~F = −ρ

∫∫

sb

~n[Φt +
1
2
∇Φ · ∇Φ + gz]ds (2)
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and the moment from

~M = −ρ

∫∫

sb

(~x × ~n)[Φt +
1
2
∇Φ · ∇Φ + gz]ds (3)

where ~n is unit normal vector pointing outward from the fluid domain
and sb denotes instantaneous wetted body surface.

The control volume considered is surrounded by sb and by the con-
trol surface sc. If sb and sc intersect the free surface, we denote the
intersection as w and c, respectively. The free surface between w and c
is denoted by sf . It is assumed that sb and sc intersect the undisturbed
free surface perpendicularly. The rate of change of the linear momentum
P of the fluid in the control volume is

dP(t)
dt

= ρ
d

dt

∫∫∫
~V dv = ρ

∫∫

sbfc

[Φt~n + ∇Φ(~U · ~n)]ds (4)

and the rate of change of the angular momentum H is

dH(t)
dt

= ρ
d

dt

∫∫∫
(~x× ~V )dv

= ρ

∫∫

sbfc

[Φt(~x × ~n) + (~x× ∇Φ)(~U · ~n)]ds (5)

Here ~V is the fluid velocity and ~U is the velocity of the control surface.

Thus ~U · ~n = 0 on sc and ~U · ~n =
∂Φ
∂n

on sb and sf .

Using an identity given in [11, p134]
∫∫

sbfc

[
∂Φ
∂n

∇Φ− 1
2
(∇Φ · ∇Φ)~n]ds = 0 (6)

and the equations (4) and (5), we have the force and moment in the
forms

~F = ρ

∫∫

sc

[(Φt +
1
2
∇Φ · ∇Φ)~n − ∂Φ

∂n
∇Φ]ds

+ ρ

∫∫

sf

(Φt +
1
2
∇Φ · ∇Φ)~nds − ρg

∫∫

sb

z~nds − dP
dt

(7)

and

~M = ρ

∫∫

sc

[(Φt +
1
2
∇Φ · ∇Φ)(~x× ~n) − ∂Φ

∂n
(~x ×∇Φ)]ds

+ ρ

∫∫

sf

(Φt +
1
2
∇Φ · ∇Φ)(~x × ~n)ds

− ρg

∫∫

sb

z(~x × ~n)ds− dH
dt

(8)
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4 Chang-Ho Lee

Considering quadratic terms from the foregoing equations as shown
in Appendix, we have the expressions for the quadratic forces and mo-
ments. We first consider the mean drift forces and moments. Since the
time averages of last terms in the equations (7) and (8) vanish, there
is no contribution from these terms to the mean forces and moments.
The force can be obtained from the time average of

~F (2) = − 1
2

ρ

g

∫

C
~n′φ2

t dl − ρg

∫

W
[ζ(~Ξ · ~n′)]~kdl

− ρ

∫ ∫

Sc

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds

+ ρ~k

∫ ∫

Sf

(ζ
∂φt

∂z
+

1
2
∇φ · ∇φ)ds + ~F

(2)
S (9)

and the moment from

~M (2) = − 1
2

ρ

g

∫

C
(~x × ~n′)φ2

tdl − ρg

∫

W
ζ(~Ξ · ~n′)(~x × ~k)dl

− ρ

∫ ∫

Sc

[(~x× ∇φ)
∂φ

∂n
− 1

2
(~x× ~n)(∇φ · ∇φ)]ds

+ ρ

∫ ∫

Sf

(~x × ~k)(ζ
∂φt

∂z
+

1
2
∇φ · ∇φ)ds + ~M

(2)
S (10)

Here φ denotes the first order velocity potential and ζ = −(1/g)φt de-
notes the first order wave elevation. Sb, Sf and Sc are undisturbed body
surface, free surface and control surface. W and C are the intersections
of Sb and Sc with undisturbed free surface. ~n′ denotes two dimensional
normal vector to W and C on Sf , ∇′ two dimensional gradient on Sf

and ~k the unit vector in z. ~Ξ = (Ξ1, Ξ2, Ξ3) = ~ξ + ~α × ~x where ~ξ and
~α denote the motion amplitudes of the translational and the rotational
modes, respectively. Finally ~F

(2)
S and ~M

(2)
S denote parts of hydrostatic

forces and moments and they are given in Appendix. We note above
equations are different from those in [10].

The expressions for the quadratic forces and moments are completed
by adding the quadratic terms of the changes of the linear momentum
of the fluid volume

−dP(2)(t)
dt

= − ρ

∫ ∫

Sf

[∇φ
∂φ

∂n
+ ζ∇φt]ds

− ρ

∫ ∫

Sb

[∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds (11)

and the angular momentum

−dH(2)(t)
dt

= − ρ

∫ ∫

Sf

~x × [∇φ
∂φ

∂n
+ ζ∇φt]ds
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− ρ

∫ ∫

Sb

~x × [∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds (12)

to the equations (9) and (10). Among several expressions, (11) and (12)
render the total forces and moments in the most compact forms. The
derivations of these equations are provided in the Appendix. The final
expressions for the quadratic forces and moments derived here are the
same as those given in [1].

3. Numerical Results and Discussions

We first consider a hemisphere which is freely floating in infinite water
depth. The incident wave travels to the positive x axis. Figure 1 shows
the hemisphere enclosed by the cylindrical control surface. The radius
of the sphere is 1 meter and the radius and draft of the control surface
are 1.2 meters. Computations are made using the higher-order option
of the panel program WAMIT. The geometry of the sphere and that
of the control surface are represented analytically. A quadrant of the
hemisphere is represented by a patch and a quadrant of the interior
free surface of the hemisphere is also represented by a patch. The latter
is introduced to eliminate the effect of the irregular frequencies. The
unknown velocity potential on each patch is represented by quadratic
B-splines. Each patch is subdivided into 1, 4 and 16 higher order panels
to examine the convergence of the computational results. On the con-
trol surface, a fixed number of control points in the calculation of the
momentum flux. The bottom, side and top of the cylindrical control
surface are represented by 12, 12 and 4 subdivisions, respectively. The
integration is carried out using 9 nodes Gauss quadrature on each
subdivision assuming quadratic variation of the momentum flux. Thus
252 control points are used in total. The mean surge drift forces on the
hemisphere are showed on the left column of Figure 3 which will be
discussed below.

Next we consider a freely floating truncated circular cylinder of ra-
dius and draft 1 meters in infinite water depth. The center of rotation
of the cylinder is at the intersection of the axis of the cylinder with
the free surface while the center of gravity is 1 meter below the free
surface. The radius of gyration of the pitch mode is 0.5 meters. Figure
2 shows the cylinder and the control surface. Three patches are used
to represented the cylinder including the interior free surface and 3, 12
and 48 higher-order panels are used in the computation. The geometry
of the cylinder is represented analytically with nonuniform mapping
near the corner. As in the previous computation, 252 control points
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6 Chang-Ho Lee

are used, in total, on the same cylindrical control surface of the radius
and draft of 1.2 meters. The mean surge drift forces on the cylinder are
showed on the right column of Figure 3.

Figure 3 shows the surge mean drift forces on the hemisphere on
the left column and those on the cylinder on the right column. The
computational results are more accurate toward the bottom plots for
which finer discretization is used. Each plot contains three surge forces
computed by three approaches; the pressure integration on the body
surface [5], the far field momentum conservation [6] and the momentum
conservation within the control surface. The figure shows the results
from the pressure integration are least accurate. Specifically, while the
mean surge force on the cylinder, which has a sharp corner, can be
calculated accurately using 3 panels up to around KR = 3 by mo-
mentum conservation, it is necessary to use 48 panels for the pressure
integration. Since the computational time for the linear solution in
the higher-order method is typically proportional to the square of the
number of panels, the momentum conservation can be orders of mag-
nitude more efficient than the pressure integration for the evaluation
of the mean forces. The figure also shows the results using the control
surface are identical with those from the momentum conservation to the
graphical accuracy. The computational time using the control surface
depends on the number of control points. Using compact control sur-
faces surrounding the body, as shown in this example, the additional
computating time for the calculation of the momentum flux on the
control surface can be similar to that for the linear solution.

This example illustrates the advantages of using control surface for
the calculation of mean forces. The computational results are as accu-
rate as those from the far field momentum conservation. All components
of mean forces and moments can be calculated more efficiently than the
pressure integration. For multiple bodies, the forces and moments on
individual body can be obtained using separate control surface sur-
rounding each body which is not possible by the far field momentum
conservation.

4. Conclusion

We derived expressions for the quadratic forces and moments by apply-
ing momentum conservation in the finite volume surrounding the body.
The final form of the expressions can be made to be identical to those
obtained by Dai et al. [1]. Computations of mean drift forces show
the accuracy and efficiency of using the control surfaces. All compo-
nents of the forces and moments can be evaluated as with the pressure
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On the evaluation of quadratic forces on stationary bodies 7

Figure 1. Geometry of the hemisphere and control surface. The radius of the sphere
is 1. The radius and draft of the cylindrical control surface are 1.2. The meshes are
for the purpose of the visualization only.

Figure 2. Geometry of the cylinder and control surface. The radius and draft of the
cylinder are 1. The radius and draft of the cylindrical control surface are 1.2. The
meshes are for the purpose of the visualization only.

jnn70-chlee.tex; 15/10/2006; 20:26; p.7



8 Chang-Ho Lee

Figure 3. Nondimensional mean surge forces on the hemisphere and cylinder. The
forces on the hemisphere is on the left column and those on the cylinder on the right
column. The forces are normalized by ρgRA2 where ρ is the water density, g is the
gravitational acceleration, R is the radius and A is the wave amplitude. K is the
infinite depth wave number. Forces by the pressure integration are represented by
dashed lines, those by the momentum conservation by solid lines and those by using
control surface are represented by squares.
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integration but by avoiding the integration of pressure on the body
the computational results are as accurate as the far field momentum
conservation.

The expressions for the quadratic forces and moments in bichromatic
waves contain the integration over the body surface of the pressure
proportional to the fluid velocity, as shown in the equations (11) and
(12). Thus further study is needed to find the computational advantage
of the current approach, in particular, when the body has sharp corners.
However, in comparison with the pressure integration, the pressure to
be integrated is less singular. In addition, when low frequency forces are
of interest, the contribution from the integration over the body surface
will be small, linearly proportional to the difference of two frequencies.

Appendix

The quadratic terms of the integral on sc, denoted by FSc , are given in
the form

~F
(2)
Sc

= −ρ

g

∫

C
~n′φ2

t dl − ρ

∫ ∫

Sc

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds (13)

where the first line integral accounts for the momentum flux over the
portion of sc for z = (0, ζ).

The quadratic terms of the integral on sf , denoted by FSf
, are

~F
(2)
Sf

= − ρg~k

∫

W
[ζ(~Ξ · ~n′)]dl +

ρ~k

2

∫ ∫

Sf

(∇φ · ∇φ)ds

+
ρ

g

∫ ∫

Sf

φt∇′φtds + ρ~k

∫ ∫

Sf

ζ
∂φt

∂z
ds (14)

where the first line integral accounts for the vertical momentum flux
over the portion of free surface between the mean position of the water-
line W and the unsteady line of intersection of the body with the free
surface w. The third integral accounts for the horizontal momentum
flux due to the slope of the free surface elevation. This term was omitted
in the equation (13) of [10]. The last integral is due to the expansion
of the velocity potential from Sf to ζ.

The quadratic terms due to the hydrostatic pressure on sb are ob-
tained by two integrals. One is over the mean wetted body surface Sb

and the result, following [5], takes a form

~F
(2)
Sb

= −ρg

∫∫

Sb

z~nds

= ~α × (−ρgAwp(ξ3 + α1yf − α2xf )~k) + F
(2)
S (15)
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where Awp is the waterplane area, xf and yf are the coordinates of the
center of floatation and

F
(2)
S = −ρgAwp[α1α3xf + α2α3yf +

1
2
(α2

1 + α2
2)Zo]~k (16)

Here Zo denotes the vertical coodinate of the origin of the body-fixed
coordinates system relative to the mean free surface.

The second integral is over the region between z = Ξ3 and z = ζ on
sb and it takes the form

~F
(2)
W = −ρg

∫

W
dl

∫ ζ−Ξ3

0
(z̄ + Ξ3)~ndz̄ = −1

2
ρg

∫

W
~n′(ζ2 − Ξ2

3)dl (17)

where the vertical coordinate of the body fixed coordinates system
z̄ = z − Ξ3.

Invoking Stoke’s theorem to a vector ~V , we have a relation
∫ ∫

[(~n× ∇)× ~V ]ds =
∫

(~t × ~V )dl = −
∫

[V3~n
′ − (~V · ~n′)~k]dl (18)

when the tangential vector t in the line integral is perpendicular to ~k
Applying this relation over the region enclosed by the waterline, W
with ~V = (0, 0, Ξ2

3), we have

1
2
ρg

∫

W
(~n′Ξ2

3)dl = ~α × (ρgAwp(ξ3 + α1yf − α2xf)~k) (19)

Similarly, applying this relation between W and C with ~V = (0, 0, ζ2),
we have

1
2
ρg(

∫

W
~n′ζ2dl +

∫

C
~n′ζ2dl) =

ρ

g

∫ ∫

Sf

φt∇′φtds (20)

Excluding the change of momentum dP/dt, the quadratic forces can
be obtained as the sum of ~F

(2)
Sc

, ~F
(2)
Sf

, ~F
(2)
Sb

and ~F
(2)
W . Upon substituting

the relations in the equations (19) and (20) to this sum, we have the
mean forces in the form shown in the equation (9). The expression for
the moments can be obtained in the similar manner and it is shown in
the equation (10). Here we provide the hydrostatic moments, M

(2)
S , for

the completeness.

M
(2)
S = ρg{[−Awp(ξ3α3xf +

1
2
(α2

1 + α2
2)Zoyf ) − 2α1α3L12

+ α2α3(L11 − L22) + ∀(α1α2xb −
1
2
(α2

1 + α2
3)yb)]

− Awp(ξ3 + α1yf − α2xf)(α1Zo + ξ2)}~i
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+ ρg{[−Awp(ξ3α3yf − 1
2
(α2

1 + α2
2)Zoxf) + 2α2α3L12

+ α1α3(L11 − L22) + ∀1
2
(α2

2 + α2
3)xb)]

− Awp(ξ3 + α1yf − α2xf)(α2Zo − ξ1)}~j (21)

where ∀ denotes the volume of the body and xb and yb are the co-
ordinates of the center of buoyancy. Lij denotes the moments of the
waterplane area with the subscript i and j corresponding to the x and
y coordinates.

We next consider the quadratic terms due to the change of mo-
mentum inside the control volume in the equations (4) and (5). The
quadratic term of the integral on sc vanishes except over the region
z = (0, ζ). Those on sb and sf can be expressed in terms of the integrals
over the mean surfaces, Sb and Sf . Invoking Stoke’s theorem on Sb and
using the vector relations given in [12, Chapter 6, equations (74d) and
(74e)], we have following two relations, one for the linear momentum

g

∫

W
ζ[(Ξ3~n

′ − (~Ξ · ~n′)~k]dl + α ×
∫ ∫

Sb

φt~nds

=
∫ ∫

Sb

[(Ξ · ~n)∇φt − ~n(~Ξ · ∇φt)]ds (22)

and the other for the angular momentum

g

∫

W
ζ~x × [Ξ3~n

′ − (~Ξ · ~n′)~k]dl + ~ξ ×
∫ ∫

Sb

φt~nds + ~α ×
∫ ∫

Sb

(~x × ~n)φtds

=
∫ ∫

Sb

[(Ξ · ~n)(~x ×∇φt) − (~x × ~n)(~Ξ · ∇φt)]ds (23)

Using above relations, it can be shown that the changes of momentum
in (4) and (5) take the forms

dP(2)(t)
dt

= ρ

∫ ∫

Sf

[∇φ
∂φ

∂n
+ ζ∇φt]ds

+ ρ

∫ ∫

Sb

[∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds (24)

and

dH(2)(t)
dt

= ρ

∫ ∫

Sf

~x × [∇φ
∂φ

∂n
+ ζ∇φt]ds

+ ρ

∫ ∫

Sb

~x × [∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds (25)
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