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WAMIT Version 6.1 and 6.1S

Review of new features and extensions



Version 6.1 – new features and extensions 1

Geometric models developed with MultiSurf can be used 
directly in WAMIT

This extension requires RG2WAMIT.DLL and 
RGKERNEL.DLL

See subsequent presentations and 2002 OMAE paper



Version 6.1 – new features and extensions 2

The hydrodynamic pressure can be evaluated at user-
specified points on the body surface for both low and 
higher-order methods. 

This extension facilitates the integration of WAMIT with 
structural-analysis codes where the hydrodynamic 
pressure is required at specified locations.



IPNLBPT  (new parameter in CFG)
IPNLBPT=0 : Panel centroids (ILOWHI=0)

Internally selected points (ILOWHI=1, equally spaced
in u and v)

IPNLBPT>0 : Points in gdf.BPI (specified in body coordinates system)
IPNLBPT<0 : Points in gdf.BPI (specified in global coordinates system)

BPI (Body Point Input file)
header
NBPT  (Total number of points)
X(1) Y(1) Z(1)
.
.
X(NBPT) Y(NBPT) Z(NBPT)



ILOWHI=1
The nearest point on the body surface is found by Newton-Raphson
iteration with tolerance of 1E-4. Pressure on this body point is output  
to IOPTN.5P.  A new data file BPO (Body Point Output)  is output.  

gdf.BPO : M NP U V R NITT

ILOWHI=0
Average pressure on the nearest NNEAR=|IPNLBPT| centroids
is output to IOPTN.5P. A new data file BPO is output.

gdf:BPO : M  N1 R1  N2 R2 …  NNEAR RNNEAR



Version 6.1 – new features and extensions 3

The hydrodynamic pressure due to each of the radiation 
modes and due to the diffraction field can be output 
separately.

When the dynamics of the body are modified, the total 
pressure can be recalculated easily in a post-process.

INUMOPT5 (new parameter in CFG)
INUMOPT5=0 : total pressure is output
INUMOPT5=1 : separate components of the pressure are output



Version 6.1 – new features and extensions 4

Simplified input formats for uniformly spaced wave 
periods and headings in POT file

-Number of Periods (NPER)
Period(1),   Increment in Period

-Number of Wave-headings (NBETA)
Beta(1),  Increment in heading angle



Version 6.1S – new features and extensions 1

The higher-order method of solution is implemented 
based on the B-spline representation of the second-
order solution. 

The second-order solution can be evaluated by the low 
order method as in V5.3S and by the new higher-order 
method. 

All geometric representations of the body used for V6.1 
are accepted in V6.1S.



2πφ± +
∫ ∫

SB

φ±Gnξ
dSξ =

∫ ∫
SB

Q(φi, φj) GdSξ +
∫ ∫

SF

Q(φi, φj)GdSξ

The integration on the RHS is carried out in a piece -
wise manner after dividing the body and the free 
surface into (virtual) quadrilateral panel. 

1. Simple to store/retrieve the Rankine influence to be 
used over the period and wave heading combinations.

2. Less sensitive to the fluid velocity near the sharp 
corner



To complete the implementation of the higher order 
method:

Systematic storage/retrieval of the Rankine influence 
including the Gauss nodes associated successive 
subdivisions.

An alternative approach to evaluate the fluid velocity 
near the sharp corner based on the derivative of Green’s 
equation. Robust evaluation of the derivatives of the 
dipole and source. 
(see related subjects: Analysis of zero-thickness structures by the 
higher-order method. Irregular frequency removal - revisiting Burton 
and Miller’s method)



Version 6.1S – new features and extensions 2

An option for automatic free surface discretization.

The free surface exterior to the bodies is discretized into 
quadrilateral (and triangular panels). The size of the 
panels can be modified one parameter.

Simplify the preparation of FDF (Free-surface Data File) 
for multiple waterlines, particularly for the multiple bodies 
interaction.



New FDF file format:
Header
Partition radius
NPF    SCALE
NAL, DELR, NCIRE, NGSP

NPF < 0  Automatic discretization
Panel size = SCALE*average length of waterline segments

(When NPF>0 or NPF=0, NPF is the number of free surface  panels. 
The coordinates of the panel vertices  must be specified in FDF
file.) 



Examples



A) Adjacent to the waterline segments form outer edges
B) Outside the contours
C) Inside the contours (removed)
D) Intersected with contours

Panels belong to (D) are subdivided

Dotted line is a part of a contour intersecting a panel.  
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A panel is intersected by two contours and one contour 
intersect more than twice



Version 6.1S – new features and extensions 3

The second-order pressure is output at user specified 
points (IPNLBPT>0 or IPNLBPT <0).

The quadratic force along the waterline is output when 
IPNLBPT=0. The length of waterline segment is output in 
gdf.PNL.  



Version 6.1S – new features and extensions 4

Fortran 90/95 with dynamic allocation of array 
dimensions at runtimes.

PC Executable version



Integration of WAMIT and 
MultiSurf

Review of V6.1 IGDEF=2 option
See also the appendix paper by Lee, 

Letcher, et al, OMAE2002



WAMIT.EXE
(Fortran)

RG2WAMIT.DLL

(mixed Fortran/C)

RGKernel.DLL
(ANSI C).MS2 file

MultiSurf
(includes
RGKernel.DLL)

N,u,v

N,u,v X, Xu, Xv

X, Xu, Xv



MultiSurf 1.23
// Truncated cylinder example for OMAE2002
Units: m MT
Symmetry: x y
Extents: -1.000 -1.000 -0.500 1.000 1.000 0.000
View: -30.00 120.00 0
Places: 3
DivMult: 1
BeginModel;
AbsPoint p0 15 1 / 1.000 0.000 -0.500 ;
ProjPoint p1 11 1 / p0 *X=0 ;
ProjPoint p2 11 1 / p0 *Z=0 ;
Line L1 6 1 1x1 / * p0 p1 ;
Line L2 6 1 1x1 / * p0 p2 ;
ProjPoint p3 11 1 / p1 *Z=0 ;
Line L3 6 1 1x1 / * p1 p3 ;
RevSurf s1 2 3 4x4 4x4 1 / * L2 L3 0.0000 90.0000 ;
RevSurf s2 12 3 4x4 4x4 0 / * L1 L3 0.0000 90.0000 ;
EndModel;

Example of .ms2 file
(output from MultiSurf, input to WAMIT)



Truncated cylinder example 1.5 m radius, 2.0 m draft
1.50 9.8066 ULEN, GRAV
1 1 ISX, ISY
2 2 NPATCH, IGDEF
5 NLINES

TRCYL.MS2
*
0 0 0 FAST, DivMult, outward normals
p0 1 1.50 set radius
p0 3 -2.00 set draft

Example of GDF file   (prepared by user)



Two barges in catamaran configuration modeled with MultiSurf (IGDEF=2)
Spar geometry evaluated analytically using GEOMXACT subroutine



Drift forces at 45 degree heading
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Navis Explorer I
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CONCLUSIONS

• Methodology developed for integration of geometry   
definition and wave analysis

• Relational Geometry permits robust geometry dependencies
• No work required to discretize the body
• Higher-order analysis of the hydrodynamic solution
• Continuous representation of the pressure on the body 

surface
• Multi-body analysis permits mixing of geometry definitions
• Navis Explorer I demonstrates utility of integration and  

effective method to damp moonpool resonances



Computation of zero-thickness 
structures by the higher-order 
method



Formulation

2πφ(x) +
∫ ∫

SB

φGnξ
dSξ +

∫ ∫
SD

∆φGnξ
dSξ =

∫ ∫
SB

φnξ
GdSξ (1)

for x ∈ SB, the conventional body surface.

∫ ∫
SB

φGnξnxdSξ +
∫ ∫

SD

∆φGnξnxdSξ = −4πφnx +
∫ ∫

SB

φnξ
GnxdSξ (2)

for x ∈ SD, dipole patches.



Evaluation of the hyper-singular integral due 
to the double normal derivative

S D

S T

X

N X
X

v

u

SD

(
1

r
)nξnxdS =

∫ ∫
(

1

rSD

)nξnx − (
1

rST

)nξnxdudv +
∫ ∫

ST

(
1

r
)nξnxdS

∫ ∫

The last integral is evaluated with the application of the Biot-Savart law 



Circular disk translating perpendicular to 
its surface

Two different discretizations are used: Cosine spacing toward the edge 
and uniform spacing. Bottom halves of disks are shown. 



Added-mass/2 = 4/3
Added mass is normalized by R3 R = radius, T= thickness
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Left figure: by higher-order method using cosine and uniform spacing

Right figure: by low order method using cosine spacing  
(from WAMIT Consortium Report 2000)



Translating half-spherical shell

Bottom half of the shell is shown



Added-mass/2  is compared to
those with non-zero thickness

+
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t=T/R is the ratio of the thickness and the radius
The added mass is normalized by R3



Spar with three spiral strakes

Radius=18m, Draft=200m, Strake=3.7m

The figure shows higher-order panels made internally based 
on the input parameter PANEL_SIZE=4.5m



Surge Force and Yaw Moment
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Surge Force and Yaw Moment
Comparison with the low order method
Low order (from WAMIT Consortium Report 2000)                   Higher-order

T=0 and T=1” (T= thickness of the strake)                  T=0 
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Surge/Yaw Mean Drift Force/Moment
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Conclusions

The higher-order method is applied to the 
analysis of zero-thickness structures
Using a projected flat surface, the hyper-
singular integral is evaluated in a robust 
manner based on the numerical quadrature
consistently applicable to other types of 
singularities
The computational results highlight the 
advantages of the higher-order method.



MultiSurf/WAMIT Analysis of 
Trapping Structures

By J. N. Newman
(Based on collaborations with

P. McIver and J. Letcher)



Part 1 – Axisymmetric
structures

Most are generated by 
streamlines/surfaces of the ring 

source  Kc=j(0,2)=5.520…



Kx

K
z

0 1 2 3 4 5 6 7 8

-4

-3

-2

-1

0

Streamlines generated by a single ring source at j(0,2)=5.52

Solid red lines denote the data sets used for MultiSurf/WAMIT analysis
(subsequent results are with the red curve for outer body,
family of curves for the inner body



X Y

Z

Perspective view of complete 2-body structure from above
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K=1 is a trapping mode

K=.3 is probably a 
pumping mode 
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Added mass and damping, 2 bodies, panelsize=1

K=1 is a trapping mode 
(surfaces are out of phase)

K=.75 is probably a 
pumping mode (surfaces 
are in phase)
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peaks due to axisymmetric
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X3 (heave) has peaks at the 
trapping mode (K=1) and 
pumping mode (K=.75)
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Added mass and damping, inner body only, panelsize=1

This is a pumping mode, 
near K=1/draft, and 
moonpool is small



• The two following slides show the heave added 
mass for a family of inner bodies of increasing 
size  (decreasing Rinner), to indicate the 
variation of the pumping mode.  It appears that 
as the inner body grows, the pumping mode 
first increases toward 1.0 and then decreases.

• Rinner=0.4 is in some sense critical.
• Rinner=0.2 has a narrower bandwidth at the 

`pumping’ mode K=0.816 than at K=1
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Streamlines generated by a single ring source at j(0,2)=5.52

Green lines denote the family of cylinders used for comparison
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J_0’(KR)=0 at K=0.93456



Part 2 – Non-Axisymmetric
structures

These are generated by 
streamlines/surfaces of the ring 

source  Kc=j(0,1)=2.405…



Non-axisymmetric torus generated by a ring source of radius c=j(0,1)

Inner radii = (0.2c,0.3c)   Ring source is shown by blue circle
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Convergence of heave added-mass with increasing NU,NV      
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“Barge”
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“Ship hull”
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Irregular frequency removal –
revisit Burton and Miller



Two formulations

Green’s equation including the interior free surface (Ohmatsu)

2πφ(x) +
∫ ∫

SB+SF

φGnξ
dSξ =

∫ ∫
SB+SF

φnξ
GdSξ (1)

with φn = 0 on SF .

Combination of Green’s equation and its derivative (Burton and Miller)

2πφ(x) +
∫ ∫

SB

φ(Gnξ
+ βGnξnx)dSξ = −2πβφnx +

∫ ∫
SB

φnξ
(G + βGnx)dSξ (2)

with the imaginary part of the complex constant β �= 0.



Truncated circular cylinder, radius 1 and draft 0.5.
Surge Added-mass
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Surge Damping Coefficient
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Surge Exciting Force

KR

S
ur

ge
E

xc
iti

ng
Fo

rc
e

3 3.5 4 4.5 5

0.4

0.6

0.8 IRR=0
IRR=1 Beta=0.01
IRR=1 Beta=0.05
IRR=1 F-S patch

KR

S
ur

ge
E

xc
iti

ng
Fo

rc
e

3 3.5 4 4.5 5

0.4

0.6

0.8 IRR=0
IRR=1 Beta=0.01
IRR=1 Beta=0.05
IRR=1 F-S patch

KR

S
ur

ge
E

xc
iti

ng
Fo

rc
e

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 IRR=0
IRR=1 Beta=0.01
IRR=1 Beta=0.05
IRR=1 F-S patch



Heave Added-Mass
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Heave Damping Coefficient
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Heave Exciting Force
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Comments
Burton and Miller’s approach is less robust than the method using 
the interior free surface. This is consistent with the results based on 
the low order method.

The error, however, is small compared to that observed in the low 
order method and it is also less sensitive to the value of beta.

The potential advantage is there is no need to include the interior 
free surface patches. It also can be more efficient depending on the 
body geometry. CPU times are proportional to 2, 3 and 5 for the 
computations with IRR=0, with Burton and Miller approach, and the 
use of interior free surface for the current example.



Development of a 
Post-Processor for
frequency-to-time 

transformation
(“F2T.F”)

By J. N. Newman



The objective is to develop a robust utility which 
can be used for general purposes, based on 
standard WAMIT outputs.  The present status of 
this work is that a FORTRAN program F2T.F has 
been developed, and limited tests have been 
made.  This program accepts as input Options  
1-4 (added mass/damping, Haskind exciting 
forces, Diffraction exciting forces, RAO's) for 
unrestricted numbers of rigid-body modes, 
generalized modes, and bodies. The 
corresponding IRFs are output in analogous 
files.



Inputs from WAMIT:

• Numeric output files for any combination of 
Options 1-4 (added-mass + damping, 
Haskind exciting force, Diffraction exciting 
force, RAO), arbitrary numbers of modes, 
generalized modes, bodies, etc.

• This data must be evaluated at a large set 
of uniformly spaced frequencies (including 
zero and infinity for Option 1)



Outputs from F2T

• Similar files to the numeric output files 
from WAMIT with PERIOD replaced by 
TIME in uniformly spaced time steps, and 
frequency-domain coefficients replaced by 
their Fourier transforms.

• Duplicative files with impulse response 
functions tabulated in a format more 
suitable for use.



Radiation IRFs (Option 1)

Aij(ω) − Aij(∞) =
∫ ∞

0
Lij(t) cos ωt dt

Bij(ω) = ω
∫ ∞

0
Lij(t) sin ωt dt

Lij(t) =
2

π

∫ ∞

0
[Aij(ω) − Aij(∞)] cosωt dω

Lij(t) =
2

π

∫ ∞

0

Bij(ω)

ω
sin ωt dω



Diffraction IRFs (Options 2,3,4)

Xi(ω) =
∫ ∞
−∞ Ki(t)e

−iωt dt

2πKi(t) =
∫ ∞
−∞ Xi(ω)eiωt dω

Xi(−ω) = X∗
i (ω)

Ki(t) =
1

π

∫ ∞
0

[Re(Xi) cosωt − Im(Xi) sinωt] dω



Current Status

• Program is developed and sample results 
will be shown.   These provide some 
guidance for selecting inputs.

• Limited validations have been made to 
compare with time-domain results.

• Possible extensions: IOPTN(5,6,7)? 
Second-order hydrodynamics?



Results for a floating hemisphere
(R=1, g=1, frequencies 0(.1)6.0, panel_size=.25)

TiMIT Inputs: NEQN=256, DeltaT=0.1
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Results for a floating hemisphere
Comparison of exciting force IRF’s
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Results for ISSC TLP
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Comparison of radiation IRF’s with TiMIT
(infinite depth in both WAMIT and TiMIT)
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Results for ISSC TLP
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Comparison of IRF’s with TiMIT
(infinite depth in both WAMIT and TiMIT)
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Pros and Cons of WAMIT+F2T vs. TiMIT

• Pro: availability of WAMIT options 
including finite depth, higher-order 
analysis, MultiSurf or Geomxact geometry  
Faster run times for complex structures 
and/or large-time simulations

• Con: no current or forward speed            
no nonlinear hydrostatics
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