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The 5" Annual WAMIT Consortium Meeting

October 6-7, 2004

Woods Hole, M assachusetts



Agendafor 5" Annual WAMIT Meeting
Room 310, Marine Resource Center, Swope Center, Woods Hole, MA

October 6:
9:00AM: Welcome
9:20AM: "WAMIT Vv6.2"
C.-H. Lee, WAMIT
10:00AM: "Extension of WAMIT for linear coupling with internal tanks'
J. N. Newman, WAMIT
10:40AM: Break
11:00AM: "Evaluation of hyper-singular integrals in the higher-order method
- for fluid velocity and dipole patches’
C.-H., WAMIT
11:30AM: "Comparison of Iterative solvers— I TRCC and GMRES
for the higher-order method"
C.-H. Lee, WAMIT
12:00PM: Lunch

1:30PM: "Nonlinear local loads on afixed structure"
P. Teigen, Statail

2:15PM: “Visualization and Interpretation of Offshore Platform Response”
J.M. Niedzwecki, OTRC

3:00 PM: Break

3:30 PM: "Modelling problems related to the Snoehvit in-docking operation”
P. Teigen, Statail

5:30PM: Mixer and Dinner
October 7:

9:00AM: Technical discussion
10:30AM: Break

10:50AM: Business meeting

12:00AM: Lunch



Contents

1. WAMIT V6.2

2. Extension of WAMIT for linear coupling with internal tanks

3. Evauation of hyper-singular integrals in the higher-order method
4 Comparison of Iterative methods— ITRCC and GMRES.

5 Current Participants

6 Appendices

Second-order diffraction in short waves—J. N. Newman

Wave effects on vessels with internal tanks —J. N. Newman

Progressin wave load computations on offshore structures— J. N. Newman
Note on the geometry of projection —C.-H. Lee
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Spheroid with four tanks
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MultiSurf generated FPSO (IGDEF=2)

FPSO 300 x 50 x 15m
tanks 30 x 40 x 15m
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Second-order diffraction in short waves

by J. N. Newman
<jnn@mit.edu>

(19th Workshop on Water Waves and Floating Bodies — Cortona, Italy — 28-31 March 2004)

1 Introduction

Second-order wave loads are significant for various types of offshore structures. Many analytical
studies have been performed, based on the assumption of potential flow and using perturbation
expansions including all contributions of second order. Most results are for monochromatic in-
cident waves, where the second-order effects include a second-harmonic and a time-independent
component. Additional biharmonic effects must be considered in a spectrum, including both
sums and differences of the first-order frequencies. Analytical studies are restricted either to
two dimensions or to axisymmetric three-dimensional structures. Several numerical codes have
been developed based on the panel method, to predict the second-order wave effects on more
general structures in three dimensions.

When the incident waves are short, or the frequency w is large, the first-order wave field is
confined to a thin layer near the free surface. The first-order loads are asymptotically small,
and can be analyzed by the method of geometric optics or ray theory. Little is known regarding
second-order effects in this regime except for a few specific bodies. In general the second-order
loads do not tend to zero (when normalized in the usual manner based on the square of the
incident-wave amplitude). The simplest example is the oscillatory ‘runup’ at the waterline,
which causes a concentrated pressure force equal to % pgC?, where p is the fluid density, g is the
gravitational acceleration, and ( is the first-order local free-surface elevation.

The pressure due to the second-order component of the potential is a more complicated cause
of second-harmonic loads. Unlike the first-order diffraction field, the second-order potential
persists at large depths below the free surface even when the first-order waves are very short
(Newman, 1990). For specific bodies it has been shown that the second-harmonic force increases
without bound, in proportion to the wavenumber w? /g in two dimensions (Wu & Eatock Taylor,
1989; Mclver, 1994) and in proportion to the frequency w for a vertical cylinder in three
dimensions (Newman, 1996). Less is known regarding the behavior of the sum- and difference-
frequency components in short biharmonic waves.

Our objective here is to derive asymptotic results for the second-order potential and loads
in the short-wavelength regime. A simplified problem is considered, where waves are incident
upon a two-dimensional (cylindrical) body which intersects the free surface. Both oblique and
normal incidence are considered. For three-dimensional applications the results can be applied
to elongated vessels using a strip-theory synthesis, and also to compact bodies where the radius
of curvature along the waterline is large compared to the wavelength. Since the body motions
are small in short waves, it is reasonable to consider only the diffraction problem where the
body is fixed in position. The fluid depth is assumed to be infinite.



2 Formulation

The horizontal coordinates x,y are in the plane of the free surface and the z-axis is positive
upward. The body is cylindrical with its generators parallel to the y-axis. The sides intersect
the free surface vertically along the waterlines + = +b. Two incident waves (i = 1,2) are
considered, with complex amplitudes A;, frequencies w;, wavenumbers k; = w? /g and incidence
angles [3; relative to the positive z-axis. The (z,y) components of the wavenumber vector are
u; = k;cos 3; and v; = k; sin 3;. Subscripts are used to denote the frequency components, and
superscripts for the perturbation orders.

The total potential, correct to second order, is ¢ = ¢ + ¢, The first- and second-order
potentials are given by the real parts of

¢(1) — A1¢1eiw1t —I—A2¢2€iw2t, (1)

¢(2 A%QS—F 21w1t_|_A + 21wzt_|_2A A2¢12e1(w1+wz —|—2A AF ¢1—2e1(w1 wz)t (2)

The incident waves propagate toward the body in the domain z < 0, thus |5;] < 7/2 and
u; > 0. Since the wavelength is short relative to the dimensions of the body, complete reflection

is assumed for the first-order solution at the waterline x = —b. Thus, in the domain z < —b,
2 . .
¢; =~ 9 cos (us(x + b)) eriztiuib=iviy (3)
Wi

The first-order solution vanishes to leading order for « > b and in the region below the body.

3 The second-order free-surface condition

The potential ¢(? satisfies the homogeneous condition ¢{2) = 0 on the submerged surface of
the body, and the inhomogeneous free-surface condition

@ 4 g = _% (V¢(1))2 on z=0 and |z]>b. (4)

The right-hand side of (4) is simplified since the first-order potentials are of the form (3).

Since the second-harmonic terms involving e*“i can be recovered from the sum-frequency
term as special cases, we consider only the last two terms in (2). After substituting (3) in (4)
and performing some reduction the second-order free-surface condition takes the form

2

—(w1 £ w2)?8%) + gol5) = —iH (—x)(wr £ wn) I gmilortva)y+i(u +ua)b
W12

[(k‘lk‘g F v1V9 — ul’ng) COS((U1 + UQ)([L’ + b))
+(k1ko F v1vg + ugug) cos((uy — ug)(z + b))] . (5)

Here H(—xz) is the Heaviside unit function, which vanishes for > 0. In general there are
two components of the forcing function on the right side of (5) which are oscillatory in the
z-direction with the wavenumbers u; 4+ us. These two wavenumbers are present for both the
sum- and difference-frequency cases. In special cases, where the factor (k1ks Fv1v2 —ujug) = 0,
only one component exists with the ‘slow’ wavenumber u; — us. This follows in all cases of
normal incidence, where v; = 0 and u; = k;, and also for the sum-frequency case in oblique
monochromatic waves. The slow component is particularly important when u; — us — 0 since
the forcing is nearly constant, extending to infinity, and this results in a second-order solution
which persists to large depths in the fluid.



4 Particular solutions of the free-surface condition

Solutions of the free-surface condition (5) can be decomposed into components which are solu-
tions of o
—vp+ ¢, =H(—x)e ™™™ on z=0. (6)

Particular solutions which satisfy (6) can be combined so that the remaining components of
the second-order potential satisfy either homogeneous boundary conditions on the free surface
or inhomogeneous conditions where the forcing functions on the right-hand-side tend to zero
away from the body.

Solutions of (6) can be constructed from the potential for a pressure distribution on the free
surface (Wehausen & Laitone, 1960, equation 21.3). The forcing function on the right side of
(6) is first restricted to a finite rectangular domain (—M <z <0, —M <y < +M), and the
limit as M — oo is evaluated. This gives the solution in the form

: kz+irx
I e dr
7 ¢ /C(k:—y)(r—l—u)’ 0

where k& = v/r?2 + 02 and C is an appropriate contour of integration between Foo. The pole
at r = —u is associated with the ‘locked waves’, which propagate with the same phase as
the forcing function in (6). Defining the contour C' to pass above this pole ensures that the
integration from —M to 0 tends to a finite limit as M — oco. Two other poles are associated
with the ‘free waves’, where k = v and r = £1/v? — v2 = +pu. The radiation condition requires
that Im(k) > 0, and thus when p is real the contour C' passes above the pole 7 = +u and below
the pole r = —u. Except for these three poles, and branch points at r = +iv associated with
the function k = v/r2 + v2, the integrand of (7) is analytic in the complex r-plane. Branch cuts
are established extending from +i|v| to £ico on the imaginary axes, and k is continued into
the cut plane with the convention that £ > 0 on the real axis.

For x 2 0 the contour C' in (7) can be replaced by a contour around the upper or lower
branch cut, respectively. It follows from residue theory that

1 V(U + 'u) » eﬁz—ium .
— |+ J(+ vz—ip|z| H(— vy ]
o= g 10 + G E i () S o )

where the sign (4) corresponds to the domain # 2 0 and

) e—t|m| eiwz e—iwz
I(u) = /| l + ] dt . 9)

of t—iu |w+iv  w—iv

Here k = vu? +v? and w = vt? —v%2. When u = 0 and v = 0, corresponding to the limit
where the oscillatory part of the forcing function on the right side of (6) is constant, (9) reduces
to the integral representation derived in a different manner by Miao & Liu (1989, equation 14).

For large values of |vz| and |kz| I tends to zero, exponentially for |v| > 0 and in proportion
to |x|™2 when v = 0. In these cases the first term in (8) is evanescent. However when k =
Vu?+v? = 0, the combination of the first and third terms is vortex-like in the far field, as
shown in the next Section. This is the dominant cause of the second-order force in short
wavelengths. The second term in (8) represents radiating free waves on both sides of x = 0.
The locked waves represented by the third term exist only in z < 0.

For the sum-frequency case, where v = (w; + w2)?/g, it is easy to show that v? > (u? + v?);
thus (pu? —u?) = (¥ —k?) > 0, and pu is real. For the difference-frequency case, v = (w1 —w»)?/g,
regimes exist where v? < v? and p is imaginary. In these regimes the poles at r = & are on
the imaginary axis, and the first exponential in (8) is replaced by e**71#%l: thus the free waves
are trapped, with exponential attenuation in both the £x-directions.



5 Normal incidence

For normal incidence, where v; = 0 and u; = k;,
I(u) = ;{(V —u) [ei”C*E (iw¢*) —e ™ E (—1uC*)}
R 1 1
(v +u) [T By (<) — e By (—iu)| | (10)

Here E; denotes the exponential integral and ¢ = |z| + iz. For monochromatic waves |u| =
|u; — ug| — 0, and the limiting value of (8) is

—20
o N sgn(x)

{e—iugEl(_iVC) o eiuC*El (IVC*)} _ @euz—iﬂﬂ ’ (11)

©(0) =

where 6 = tan!(z/|z]).

An interesting connection exists between the particular solution (11) and the ‘line vortex
potential’ A derived by Mclver (1994, equation 24). Both are harmonic functions which satisfy
the same free-surface condition, and thus they differ by a homogeneous solution of the free-
surface condition. Using relations given by Wehausen & Laitone (1960, equations 13.28-31), it
can be shown that (11) is equivalent to the potential of a point vortex at = = 0, z = 0, and the
difference between (11) and Mclver’s A is a horizontal dipole at the same point.

2rv 2miv

6 Applications

Results will be shown comparing the second-order forces obtained from these approximate
solutions with computations for three-dimensional bodies carried out using the second-order
extension of the panel code WAMIT. In some cases the agreement is sufficiently good to provide
a useful quantitative estimate. In other cases the practical value of the approximation is only
qualitative.
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Wave effects on vessels with internal tanks

by: J. N. Newman

September 29, 2004

1 Introduction

The motions of fluid in internal tanks have important effects on the dynamic response of vessels
in waves, particularly when the tanks are partially filled. This topic is of special interest for
LNG tankers and FPSO vessels.

Recent studies of coupled tank/ship motions have been made by Kim (2001) and Rognebakke
& Faltinsen (2001, 2003), who couple nonlinear analyses of the tanks with linear analyses of
the flow exterior to the vessel, and by Molin et al (2002) and Malenica et al (2003) who use
linear analyses for both the tanks and the exterior flow. In these works the tank dynamics are
analysed separately from the vessel’s exterior flow, and the corresponding forces are combined
in the equations of motion.

In the present work a more unified approach is adopted, based on the three-dimensional linear
panel code WAMIT. In this and similar radiation/diffraction codes, the exterior flow is analysed
by the panel method, either by using a simple source distribution on the boundary surface or a
combined distribution of sources and normal dipoles (cf. Lee and Newman, 2004). In the usual
approach for linearized free-surface problems, the Green function (source potential) satisfies the
boundary conditions on the free surface, bottom boundary, and a radiation condition in the far
field. It follows that the source strength or dipole moment is the solution of an integral equation
on the exterior wetted surface of the body. Numerical solutions are achieved by discretization
of the wetted surface and reduction of the integral equation to a linear system of algebraic
equations. From a physical standpoint the kernel of the integral equation, or the coefficient
matrix of the linear system, can be interpreted as the influence at one field point on the surface
from a singularity at another source point.

Here the internal surfaces of the tanks are represented in the same manner as the exterior
wetted surface of the hull, in essence by combining all of the appropriate tank and hull surfaces
to form one large global wetted surface which forms the boundary between the fluid domains
and the vessel. The only fundamental modification required is to impose the condition that
the separate fluid domains are independent. This is achieved trivially, by setting equal to zero
all elements of the coefficient matrix where the source and field points are in different domains.
From the standpoint of linear system algebra, this is equivalent to forming separate sets of linear



equations for each domain, and concatenating these into one larger system in a block-diagonal
manner.

The principal advantage of this approach is that the exterior panel code can be extended to
include internal tanks, with relatively few modifications, and all of the hydrodynamic parame-
ters can be evaluated in a similar manner as for one or more vessels without tanks. Typical
parameters of interest include the radiation force coefficients (added mass and damping), excit-
ing forces, response-amplitude-operators (RAQ’s) for motions of the body, fluid pressures and
velocities, and mean second-order drift forces and moments. Another advantage is that the
geometry of the tanks can be described in the same manner, and with the same generality, as
the exterior hull surface. Disadvantages include the larger size of the linear system, which im-
plies some loss of computational efficiency, and the need to re-run the complete interior /exterior
analysis in situations where only one or the other is changed, e.g. when the tank depths are

modified.

Four applications are shown here to illustrate the coupled motions of vessels with internal
tanks. The first example is the barge model studied previously by Molin et al (2002), where
experimental data are available for comparison. The other examples are intended to show
typical results for an FPSO ship of length 300m and beam 50m, with four internal tanks. Three
different hull shapes are used, including a spheroid, a generic FPSO, and a prototype FPSO.
Each of these is described separately below. In all cases the higher-order method is used for the
analysis. For the practical FPSO the geometry is defined by the CAD program MultiSurf. For
the other applications the geometry is defined analytically. Results are shown for the response-
amplitude operators (RAQO’s), added mass, free-surface elevations in the tanks, and the mean
drift forces. For the last three examples results are shown for three relative densities of the tank
fluid, 0, 0.5 and 1.0. The total displacement and waterline plane are fixed as the tank density
is varied. The results with zero tank density are equivalent to the results where there are no
internal tanks. The results presented for the drift forces are based on momentum conservation,
and comparisons are noted between the drift forces based on momentum and direct pressure
integration. All results are normalized by the exterior fluid density, gravity, wave amplitude,
and a characteristic length scale of 1m.

2 Barge model

Molin et al (2002) present computational and experimental results for a rectangular barge of
length 3m, beam 1m, and draft 0.108m in beam seas. Two rectangular tanks are mounted
with the tank bottoms 0.192m above the exterior free surface. The tanks are symmetrically
located fore-and-aft, about the midship section. The tanks are 0.25m long, and 0.8m wide.
The center-of-gravity is 0.132m above the exterior free surface (VCG), and the roll radius of
gyration k,=0.414m.

Results are shown here in Figures 1-3 for the case where the tanks are both filled to the same
depth 0.19m, corresponding to Molin et al Figures 2, 4, and 5, and in Figures 4-6 for the case
where the tanks are filled to different depths, 0.19m and 0.39m, corresponding to Molin et al
Figures 8, 9, 10. For these computations a constant roll damping coefficient By, = 0.06 is used
for the WAMIT computations, whereas Molin et al use stochastic linearization to determine the



Fig2 -- 19+ 19 cm gauge 3
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Figure 1: Comparison of results for the free-surface elevation in one tank 25mm from the upwave wall. These
results correspond to Figure 2 of Molin et al (2002). Both tank depths are equal to 0.19m.

roll damping. The parameter Panel Size=0.25 is used for the present computations. Limited
convergence tests have been performed with Panel Size=0.125, to verify the accuracy of the
results.
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Figure 2: Comparison of results for the free-surface elevation in one tank 180mm from the upwave wall. These
results correspond to Figure 4 of Molin et al (2002). Both tank depths are equal to 0.19m.
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Figure 3: Comparison of results for the roll RAO. These results correspond to Figure 5 of Molin et al (2002).
Both tank depths are equal to 0.19m.
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Figure 4: Comparison of results for the free-surface elevation in the deeper tank 25mm from the upwave wall.
These results correspond to Figure 8 of Molin et al (2002). The tank depths are equal to 0.19m and 0.39m.
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Figure 5: Comparison of results for the roll RAO. These results correspond to Figure 9 of Molin et al (2002).
The tank depths are equal to 0.19m and 0.39m.
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Figure 6: Comparison of results for the sway RAO. These results correspond to Figure 10 of Molin et al (2002).
The tank depths are equal to 0.19m and 0.39m.

3 Spheroid

This hull shape was chosen for initial testing of the drift forces since the surface has continuous
slope, ensuring good convergence of the pressure drift force. Only the results for the momentum
drift forces are shown; the results for the pressure drift force are the same within graphical
precision. The parameter Panel Size=10 was used, and convergence was assumed based on the
good agreement between the momentum and pressure drift forces.

The multiple peaks in the sway response and sway drift force are due to the presence of tanks
with three different widths, thus there are three distinct sloshing frequencies in the transverse
direction. This is confirmed by Figure 12, which shows the surge and sway added mass, for the
tank densities p = 0 and 1. For p = 1, the peak periods of the RAO’s correspond closely to
the periods where the sum of the added mass and displaced mass is equal to zero, indicated
by the points where the red curves cross the dashed black lines in Figure 12. (The actual peak
periods are slightly smaller, due to coupling with other modes.)

Another point to note is that the roll response is zero for the case of zero tank density, since
the body is axisymmetric, but when tanks are present these induce nonzero rolling moments.

For these computations VCG=0.0, k,=15m, and k, = k.=75m.



Figure 7: Perspective view of the spheroidal hull with four internal tanks. The length of the hull is 300m and
the midship section is a semi-circle of radius 25m. Each tank is 40m long, and 15m deep, with the free surface
3m above the exterior free surface and the tank bottom 12m below the exterior free surface. The tank widths
are 24m, 32m, 40m, and 32m, progressing from x=+100m to x=-60m.
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Figure 8: RAO’s of the spheroidal hull in head waves (left) and beam waves (right).
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Figure 9: RAO’s of the spheroidal hull in bow waves (8 = 135°).
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Figure 10: Drift forces of the spheroidal hull in head waves (top) and beam waves (bottom).
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Surge drift force -- 135 degrees
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Figure 11: Drift forces of the spheroidal hull in bow waves (8 = 135°).
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Figure 13: Perspective view of the generic FPSO hull with four internal tanks. The principal dimensions of the
hull are 300m long, 50m beam, and 15m draft. Each tank is 40m long, 40m width, and 15m deep, with the free
surface 3m above the exterior free surface and the tank bottom 12m below the exterior free surface. The tanks
are located between x=+100m to x=-60m.

4 Generic FPSO

This hull form is generated using an extended version of the GEOMXACT subroutine FPSO
to define the tank geometry by flat rectangular patches. The parameter Panel Size=5 is used,
and convergence has been verified by performing computations at a limited set of wave periods
with Panel Size=2.5. For the momentum drift forces the two sets of results are graphically
identical. However the agreement between the momentum and pressure drift forces was only
fair, with the pressure forces somewhat larger than the momentum forces at the longer wave
periods. At shorter periods the two agreed well. Presumably the difference is due to the sharp
corner at the bilge, which is not so important in shorter wavelengths.

For these computations VCG=0.0, k,=15m, and k, = k,=75m.
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Figure 14: RAO’s of the generic FPSO hull in head waves (left) and beam waves (right).
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Figure 15: RAO’s of the generic FPSO hull in bow waves (8 = 135°).
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Figure 16: Drift forces of the generic FPSO hull in head waves (top) and beam waves (bottom).
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Surge drift force -- 135 degrees
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Figure 17: Drift forces of the generic FPSO hull in bow waves (8 = 135°).
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Figure 18: Perspective view of the prototype FPSO hull with four internal tanks. The principal dimensions of
the hull are 300m long, 50m beam, and 15m draft. Each tank is 30m long, 40m width, and 15m deep, with
the free surface 3m above the exterior free surface and the tank bottom 12m below the exterior free surface.
The tanks are located between x=4+75m to x=-45m, where x=+150 are the coordinates of the bow and stern,
respectively.

5 Prototype FPSO

This hull form is generated using the MultiSurf interface with WAMIT. The original MultiSurf
model for the hull was developed by Dr. John Letcher of AeroHydro, Inc. The tanks were
added to this model. The parameter Panel_Size=5 was used, and convergence was verified
by performing computations at a limited set of wave periods with Panel Size=2.5 . For the
momentum drift forces the two sets of results are graphically identical. For the sway drift force
the momentum and pressure drift forces are practically identical, but for the surge drift force
there are substantial differences, with the pressure forces smaller than the momentum forces at
all wave periods. This may be associated with the flared stern of this vessel.

For these computations VOCG=4.0m, k,=15m, and k, = k,=75m.

REFERENCES
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Figure 21: Drift forces of the prototype FPSO hull in head waves (top) and beam waves (bottom).
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Progress in wave load
computations
on offshore structures

by J. N. Newman
jnn@mit.edu

Computational methods for predicting wave effects have obvious importance for the design and operation of offshore
structures. The available tools range from simplified theories, and codes with restricted applications, to cutting-edge
Navier-Stokes solvers which seek to account for all relevant viscous and nonlinear effects. It would be most valuable to
survey this entire field, but given the restrictions of time and my own experience, | cannot do that in this lecture.

Instead | will focus on the use of the panel method, sometimes known as the boundary integral equation method or
boundary element method. This occupies a central position in the prediction of wave effects on large offshore structures,
since it can be applied to a wide variety of practical applications, with sufficient confidence that it can be used by
practitioners, not just by researchers. On the other hand we must keep in mind that panel methods are generally restricted
by the assumptions of linear potential flow, although | will show some examples where we can take one or two steps
beyond these strict limits.



3D linear computations
1970-1980

* Panel methods (after Hess and Smith)
Halkyard/Milgram, Garrison,
Hogben/Standing, v.Oertmerssen,
Faltinsen/Michelsen

« FEM Bal,Yue/Chen/Mei/Aranha,
EatockTaylor/Wu

This list includes some of the pioneers on the computation of wave loads. The 3D panel method was first developed by
Hess and Smith at the Douglas Aircraft Company. The name came from their representing the body surface by a large
number of small flat quadrilateral “panels’. This approach was extended by several groups to include free surface effects.
The early programs were very slow, and some attention was also given to finite-element methods where the entire fluid
domain was discretized, but subsequent refinements of the panel method have largely superseded the FEM activity.



The TLP challenge
1979-1991

« 2nd order (Molin, Lighthill, Kim/Yue)

 Improved 1%t order (linear) panel method
Fast Green function algorithms, iterative
solvers (Korsmeyer et al, OMAE "88)

« 2"d-order codes (Chau/Eatock Taylor,
Chen et al (BV), C-H Lee et al (MIT)

TLP's presented a number of challenges, regarding more efficient computation of linear solutions and the need to consider
second-order nonlinearities. This led to many advances, so that by the early 1990's the use of panel methods was more
universal and useful.



recent developments

higher-order panel methods
exact geometry

CAD coupling

Accelerated solver O(N log N)
Viscous post-processor

Recent developments which | will discuss include higher-order panel methods, and more exact and convenient
representations of the geometry. Also the development of accelerated solvers which are essential for extremely large
complex structures, and coupled solutions of the potential and viscous problems.



Examples of Applications and Results

Spar with strakes and moonpool

Drill ship with three moonpools

Damping of gap resonance between hulls
Linear coupling with internal tanks

VLFS (Mat structure and cylinder array)
Slowly-varying 2"9 order drift force
Navier-Stokes post-processor (VISCOR)




Submerged surface of a spar with 3 strakes and a
circular moonpool — draft 100m, radius 18m

Exact Geometry Low-order Higher-order
of submerged N=264 panels N=66 "panels"
surface (NEQN=264) (NEQN=153)

This figure shows the submerged portion of a spar, consisting of a cylindrical hull with a concentric moonpool and 3 helical
strakes. The left figure shows the exact geometry. The middle figure illustrates its representation in the low-order panel
method, where the surface is approximated by quadrilateral flat panels and the solution for the potential or source strength
is constant on each panel. The right-hand figure illustrates the higher-order method, where the surface is subdivided into
eight “patches’, indicated here by different colors. The basic requirement is that the surface should be smooth and
continuous on each separate patch. The geometry on each patch is mapped onto a rectangular parametric surface. In most
practical applications this mapping is effectively exact, so there is no approximation of the geometry. The velocity
potential is represented in each parametric space by continuous basis functions with unknown coefficients, and the solution
for these coefficients is computed in a manner which is fundamentally similar to the low-order method. To control the
accuracy of the solution, the parametric coordinates can be subdivided, as indicated by the black lines in the right figure.
We use B-splines to represent the solution, and increasing the number of subdivisions is equivalent to adding knots and
control points to the B-splines.

The principal advantages of the higher-order method are that it gives a more accurate and efficient representation of the
solution, and the only significant numerical approximation is in the solution itself, which can be controlled by increasing
the number of subdivisions in the parametric space. This approach also circumvents the work of discretizing or panelling
the body.



Surge exciting force on the spar
Dashed curves: low-order method with N panels
Solid curves: higher-order method with N unknowns
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This figure shows the surge exciting force on the spar, plotted against the wave period. Results using both the low-order
and higher-order methods are shown, with increasing numbers of unknowns to refine the accuracy. The convergence is
apparent as the number of unknowns is increased, and the accuracy of both results can be judged by the extent to which
they change with increasingly fine discretizations. Note that the accuracy of the coarsest higher-order discretization, with
N=162, is comparable to the accuracy of the finest low-order discretization, with N=6264.



Yaw exciting moment on the spar
Dashed curves: low-order method with N panels
Solid curves: higher-order method with N unknowns
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This figure shows the yaw moment, which is relatively small, since the strakes are the only surfaces which contribute. The
singular feature near 20 seconds is due to the moonpool pumping mode resonance, which causes a large axisymmetric flux
in and out of the moonpool. This has no noticeable effect on the surge force, but the induced exterior flow past the strakes
produces a yaw moment.



Linear damping of the pumping mode using a 'lid’
(heaving piston) in place of the moonpool free surface
with an added damping force D applied to the lid
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We have adopted a technique for adding fictitious damping by replacing the physical free surface of the moonpool by a lid,
or heaving piston. If the lid is free to heave, without external restraints, it acts just like the free surface. The left figure
shows the moonpool elevation, normalized by the incident-wave amplitude. The linear solution with a free surface in the
moonpool is shown by the square symbols, and the red line shows separate computations where the free surface is replaced
by a heaving lid. The response is unrealistically large near the resonant period, where damping associated with viscous
flow and separation is important. Adding a fictitious linear damping coefficient D on the lid gives the curves shown with
lower resonant amplitudes. An appropriate value of the damping coefficient can be estimated from experimental or full-
scale observations of the peak elevation in the moonpool. The corresponding results for the yaw moment are shown in the
right figure, where even a small amount of damping is sufficient to attenuate the singularity.

Representing the free surface by a simple heaving lid with only one degree of freedom is feasible here because the
moonpool cross-section is small, and only the pumping mode is relevant within the indicated range of wave periods.
Additional degrees of freedom can be included when “sloshing” modes are relevant.



Resonant interactions between two
vessels separated by a small gap
(@) 135m x 20m x 6m
(b) 270m x 40m x 12m
Gap width = 8m

Lid is a ‘'mat’ 120m x 4m x Om
Generalized modes: Chebyshev
polynomials (n=0,1,...15)

The panel method can be used for multiple bodies with complete analysis of their interactions, in effect by considering their
separate surfaces to be sub-portions of one larger surface, and by increasing the number of degrees of freedom. In this case,
with two independent vessels, there are a total of 12 degrees of rigid-body motion. One interesting complication is the
occurrence of resonances of the free surface elevation in the gap. These are similar to the moonpool pumping resonance,
but with wavelike longitudinal oscillations along the gap. As in the case of the moonpool, the gap resonances magnify the
forces acting on the two vessels, and it is necessary to simulate the additional damping due to viscous effects and
separation. In this example a flexible lid has been added in the gap, shown by the red patch on the free surface. It is not
necessary for the lid to cover the entire gap, only a sufficient portion so that it is physically able to damp the relevant
resonant modes. Thus a simple rectangular lid can be used even when the gap width is variable, and the positions of the fore
and aft ends of the lid are somewhat arbitrary.

The vertical motion of the lid can be represented by an appropriate set of basis functions. For this example we have used
16 orthogonal Chebyshev polynomials. Thus there are a total of 28 degrees of freedom, 6 for each vessel and 16 for the lid
modes.



Verification of method with Damping=0
Lines: flexible mat -- Symbols: free surface

Period=6.0
Period=6.37
Period=6.8
Period=8.0
Period=10.0

Elevation
w

Here the use of the flexible lid is verified. The curves show the deflection of the lid, without damping, as a function of the
longitudinal position X. The symbols show the more conventional computations of the free-surface elevation in the gap,
without a lid. The computed results are practically identical. Five wave periods are shown, ranging from 6 to 10 seconds.
The largest amplitude occurs at 6.37 seconds, represented by the red curve, with peak values about 5 times the incident-
wave amplitude.



Effect of damping on lid deflection
Period=6.37 seconds

D=0

D=100
6 D=200

D=400

D=1000
5

Elevation
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20 40 60

This shows the results for the peak period of the gap resonance, for a range of increasing damping coefficients. The
elevations at the longer wave periods are not affected significantly.



Navis Explorer | with 3 moonpools
Geometry definition from MultiSurf/RGKernel interface

(higher-order method)

In regard to the geometry, one can either describe this analytically, with appropriate equations, as was done for the two

previous examples, or one can use a CAD program.

In our paper two years ago at the Oslo OMAE | described in some

detail how we have interfaced the CAD program MultiSurf with the higher-order solution in WAMIT, so that there is no

need for an intermediate geometry file to be prepared by the user. That approach is illustrated here for a drillship which has

3 large moonpools.



Moonpool elevations compared to experiments
Red curves are computations with damped lids
Black curves are experiments (MARINTEK)
Hs=Significant Wave Height in meters
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This shows the comparison between experimental data and computations for the moonpool elevations, with damped lids
used for the computations. The elevations are normalized by the incident-wave amplitude. A single constant damping
coefficient for the lids was selected to match the peaks.

Three different sea states were used in the experiments, including the severe case with significant wave height 16.9m.
Nonlinear effects are evident here, with smaller relative elevations in the highest sea state. Improved comparisons would
probably result from the use of a stochastic linearization of the damping, so that larger lid damping coefficients are applied
in the more severe sea states.



Heave and Pitch RAO’s, compared to
experiments (MARINTEK)
Heave Pitch (degrees/meter)
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This shows the comparison between experimental data and computations, for the heave and pitch. The same damped lids
are used for the computations. There is remarkably little difference between the RAQO's in different sea states, indicating
that nonlinear effects are not so important for the heave and pitch motions of the vessel.



Coupled motions of an FPSO with four internal tanks

FPSO 300 x50 x 15m
tanks 30 x 40 x 15m

R
T
//’/’7/’//’,/%% 7
/A
A
77

A/
V7, i

This slide shows an FPSO with four internal tanks. The objective is to compute the coupled motions of the vessel,

including a linear analysis of the dynamic effects of the fluid in the tanks.

For this application the geometry was generated using MultiSurf, including both the exterior wetted surface of the hull
(red) and the interior wetted surfaces of the four tanks (black). Each tank has a free surface, level with the top edge of its

wetted surface. The elevation of each free surface can be different.

For this application we use the panel method to compute one simultaneous solution of all five fluid regimes, with the
interior tank surfaces added to the exterior hull surface. The principal modification required for the tanks is to enforce the
condition that there is no hydrodynamic interaction between each tank and the exterior domain, or between different tanks.
One advantage of this approach is that all of the various hydrodynamic output parameters, such as free-surface elevations

and drift forces, can be computed in the same way as in the conventional analysis of vessels without tanks.



Free-surface elevation in tanks near forward corner
Solid lines: head seas — Dashed lines: beam seas
Arrows: natural periods of 1t sloshing modes in tanks
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This shows the free-surface elevations in the four tanks, in head seas and in beam seas. The elevations are practically the
same for all four tanks. The peaks occur at a period just below 6 seconds for surge motion of the ship, and above 7 seconds
for sway and roll. The corresponding natural periods for standing-wave resonance in the tanks are indicated by the vertical
red arrows. The downshift of the peak periods by about half a second is due to the coupling between the tanks and the
dynamics of the vessel.  The smaller peaks in beam seas at 5.6 — 5.8 seconds correspond to the 1% sloshing mode which is
antisymmetric in both x and y, and may be associated with small yawing motions of the ship.



Sway/Roll RAO’s in beam seas
rho = relative density of fluid in tanks
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Here we see the sway and roll response of the FPSO in beam seas, for several different densities of the tank fluid. The total
displacement is the same in all cases. The red curves, for zero density, are equivalent to the case where there are no tanks.
Rapid variations occur near the sloshing resonance, and to account correctly for this regime it would be necessary to

perform a nonlinear analysis of the tank dynamics, but even this linearized analysis demonstrates the strong influence of the
tanks on the global response of the vessel.



Experimental validation for a barge with two internal tanks
Barge 3m x 1m x .108m, tanks .25 x .8 x 19cm, 39cm deep
Experiments and Computations by Molin et al, IMAM 2002

WAMIT
Molin Expt
Molin Code

Sway RAO
Roll RAO

4
Frequency Frequency

In this slide a comparison is made with the experiments and computations reported by Molin et al (IMAM, 2002), for a
rectangular barge with two tanks. For the case shown here the tank depths are quite different, and thus there are two
distinct sloshing resonances which are most evident in the right figure for the roll response. The blue symbols denote the
experimental data, the green curves are Molin's computations where the tank and vessel dynamics are analysed separately
and superposed in the equations of motion, and the red curves are our computations carried out as | described earlier. The
principal difference between the two computations is that we have used a constant linear added damping coefficient in roll,
whereas Molin et al used a statistical linearization procedure. Similar computational results have also been reported by
Malenica et al (ISOPE 2003) using separate analysis of the tanks and vessel.



Very Large Floating Structures (VLFS/MOB)

Example 1 -- Mat-type barge, 4km x 1km x 5m draft

Example 2 -- Array of 100 x 25 = 2500 circular cylinders
Radius=11.5m, Draft=20m, Axial spacing =40m

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000600000000000000000060000000000060000000000060060000000600000000006000000000000000
©000000000000000090000000000000000009000000000090000000000900900000009000000000090000000000900000000
©0000000600000006006006000000060000000000060000000000600000006006006000006006000000000060000000000060000
0000000 ©000000000000000000000000000000000000000000000000000 ©000000000000000006000000000060000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
©00000000000000000000600000000000000000000000000000000000 ©0060000000000600000000000000000000000000
©000000000000000000000000000000000009000000000090000000000000000000000000000000000000000000900000000
000000006060060000600 000000060000000000600000000006000 000060006000060060000000000600000000006000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
©0000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000
©0000000600600000000000000000000000000000000000000000600000000000600600000000000000000006000000000000000
©000000000000000000000000000000000000000000000000000000000000000000000000000000090000000000000000000
0000000060006000060060006000000060000000000600000000006000000060060006000006006000000000060000000000060000
©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
©000000000000000000006000000000000000000000000000000000000000000060000000000000000000000000000000000
©000000000000000000000000000000000000000000000090000000000000000009000000000000000000000000000000000
0000000600000006006000600000006000000000060000000000600000006006000600006006000000000060000000000060000
©000000000600000000006000000000000000000000000000000000000000000060000000600000000006000000000000000
©00000000000000000000000000006000000000006000000000006000000000006000000000006000000000006000000000000000
©0000000600060000060060006000000060000000000600000000006000000060060006000006006000000000060000000000060000
©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
©00000000000000060006000000000006000000000000000000000060000000060006000000006000000000000006000000000000000

One of the most challenging applications of wave-body computations is in the very large floating structures (VLFS),

including Mobile Offshore Bases (MOB), and floating airports.
planform views.

Two different types have been studied, as shown here in

The mat type shown in green is like a rectangular barge with very shallow draft. The alternative

configuration shown in red is an array of 2500 circular cylinders. In both cases the horizontal dimensions are 4km by 1km,

and the total displacements are the same.



Example 1 -- Drift forces on the rectangular barge
Wave incidence angle 45° -- Water depth = 50m

2000 Red: Surge drift force

Black: Sway drift force

® higher- order method
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This shows the horizontal drift forces for the first example, in a water depth of 50m which is very shallow compared to the
horizontal dimensions of the vessel. The solid curves are computed using the Accelerated pFFT method, with 43,000 low-
order panels. The points are evaluated using the higher-order method. The computational cost is about the same for both
methods, for this scale of problem. The dashed curves are based on simple short-wavelength approximations, assuming
complete reflection along the end and side of the structure. For this type of structure that approximation is very useful.

Hydroelastic effects are important to consider. These can be analysed by adding a suitable number of bending modes to
represent the vertical deflection of the barge, and solving the extended equations of motion including the linearized
structural-response coefficients.
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Example 2 -- Drift forces on the 100x25 Cylinder Array

Wave incidence angle 45° -- Water depth = 50m
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240,000 low-order panels
were used here (96 on each
cylinder).

These computations were
performed on a 2.6GHz PC
using the accelerated pFFT
method ("precorrected Fast
Fourier Transform’). The
CPU time averaged about
one hour per period.

The peak magnitudes are
much larger below 8 seconds,
where near-trapping occurs
between adjacent cylinders.

This shows corresponding results for the array of 2500 cylinders, represented by 240,000 low-order panels. In this case the
number of unknowns N is too large for the conventional approach, where the CPU time is proportional to N? or N®, Instead
we use the accelerated pFFT method, where the CPU time is proportional to (N log N). With this approach it is possible to

solve problems of this complexity, even with a PC.

There is obviously a strong variation due to constructive and destructive wave interactions among the elements of the array.

At shorter wave periods below eight seconds near-trapping occurs, with larger oscillations.




2"d order slowly-varying drift force on FPSO
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This application involves the slowly-varying drift force acting on an FPSO. To describe this phenomenon completely
requires that we solve the second-order problem for the velocity potential. The complete solution is complicated by the fact
that there is an inhomogeneous free surface boundary condition, corresponding to the forcing all over the free surface due
to second-order wave interactions. Thus one must discretize not only the body surface, but also the free surface, over a
very large computational domain. Further complicating this task is the fact that the computations must be repeated for all
relevant combinations of the first-order wave frequencies and heading angles.



Slowly-varying 2" order Sway Force on FPSO
(including the complete 2"d order potential)
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This shows the complete results, for the slowly-varying second-order sway force in beam seas. Four different depths are
included since the effect of shallow water is especially important here. The plots show the amplitudes of the quadratic
transfer functions, including only the difference-frequency components which contribute to low-frequency forcing. The
horizontal scales are the mean wave periods, which are derived from the mean frequencies of the two incident wave
components. The colored lines correspond to different values of the difference between the two frequencies, as shown in
the legend on the right. The black curves are for zero difference-frequency, equivalent to the mean drift force in
monochromatic waves. Note that the vertical scale is changed in the first plot, for a depth of 30m, and the slowly-varying
forces in this case are much larger for wave periods above 10 seconds.

In the analysis of slowly-varying drift motions it is common to approximate the magnitudes of the quadratic transfer
functions by the steady drift forces at the same mean frequencies. This greatly simplifies the analysis of low-frequency
motions. This is relatively useful in deep water, as indicated by the close agreement between the black and red curves in
the lower plots. However, as the depth is decreased below 100m, this approximation is poor.



Slowly-varying 2" order Sway Force on FPSO
Solid lines — complete, Dashed lines -- approximate
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Fortunately, the most important component of the second-order potential in shallow water is associated with the incident
waves, as shown here. The solid lines are the complete solution as in the previous slide. The dashed curves include the
effects of the second-order incident wave potential, and its diffraction by the vessel, but not the more complicated potential
resulting from the second-order forcing on the free surface. This gives much better results in shallow water, compared to
the approximation based on the steady drift forces.



VISCOR (Viscous Correction)
A Navier-Stokes Extension to Potential Solutions
Tim Kendon, Imperial College, UK

» Total flow velocity: v= L@+ Vv,
 Given potential input: [kp

e Solve for residual component: Vg

Lkp Vi Vorticity

Horizontal flow component Horizontal flow component

Finally I want to show some very recent results obtained at Imperial College, where a Navier-Stokes solver has been used
as a post-processor. First the irrotational velocity field is computed at a large number of points near the body, using the
higher-order panel method and including the linear free-surface effects. Then an additional rotational field is computed
within this local domain using a Navier-Stokes solver,. This provides a rational procedure to account for important viscous
effects such as roll damping.



This is a cross-section of a rolling rectangular barge, showing the computational domain for the rotational flow and
concentrated regions of shed vorticity.



Moments in plane for B/T=2, freq = 0.67Hz
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At a more quantitative level, this slide shows the time history of the roll moment, which attains its extreme values
practically in phase with the maxima of the roll velocity. The roll moment is almost entirely due to the normal pressure, as
opposed to the shear stress.



Roll Damping Coefficient against frequency
(left;VVugts) and against roll amplitude (right;BMT)

— - - —  —  WWAMIT [sharp corner)
Re =5 times too small in both cases — B WAMIT 4 VIBCOR fsrarp cormed)
—— YWAMIT + VISCOR [rounded cormer)
.03 — B Expl.[sharp cormer)

—— Exp. [rounded cormer)

0.02h -
*  WAMIT L
r 4 WAMIT+VISCOR (2, =5.75) N . *
[ & a,=11.5 . o B
0.45F & 0y=5.75" * m ho?re
r G N
0.04 F & i
; g i
0.035 | R bbb ‘. 0.015F
—_ [ = I
& oo3f > %‘ -
s | . 3 I
7 no2s b ¢ oo L
= ; .o oo, B o1
- L4 L
% 007 b * . (>
m F .
0.076 [ B© . L
: e . 0.005 -
0.01 Ap hd L
i A o . L
0.005 [ B, ® L 1 I
i A 0 A ‘
0 —® . L 0 0.05 0.1
0 0.5 1 1.5
VE28) ooonoxlr(B!?g)

This slide compares computed values of the roll damping coefficient with two sets of experiments, and the results are
qualitatively reasonable, but two caveats should be noted. First, the Reynolds number is about 5 times smaller in the
computations as compared to the experiments, and secondly, while the potential-flow computations are fully three-
dimensional, the viscous solution is two-dimensional.

I am indebted to Tim Kendon, a doctoral student working at Imperial College, for making these results available to show
here. Additional information is available from his web page: http://www.ae.ic.ac.uk/staff/sherwin/ntml/tim_free.html



Conclusions

e There has been tremendous progress in the
computation of wave loads (in ~40 years!)

« Advances in (a) theoretical methods,
(b) computational resources (hardware), and
(c) computational methods (software)

* Big challenges remain (nonlinear and
viscous effects, complex structures, unique
applications)



Further information:

o WWwW.Wamit.com - Publications

« “Computation of wave effects using the
panel method,” by C.-H. Lee and J. N.
Newman, to be published in Numerical
Modeling in Fluid-Structure Interaction,

Edited by Subrata Chakrabarti, WIT Press,
2004




Note on the geometry of projection

Chang-Ho Lee

This note is concerned in finding appropriate geometric parameter such as
derivatives and Jacobian on a region, made by the projection of a part of body
surface, on the tangent plane .

Equation of a plane, P, which passes x, and perpendicular to n, is

N, - X=MNo - "Xo =Pp

When n, is the normal vector at x, on a surface S, the plane is tangent to S
at x,.

The derivative at x, of normal dipole distributed on S is too singular even after
trianglarization. Thus the difference in the derivatives due to the normal dipoles
on S and P are evaluated first and that of on P is added. The latter is evaluated
from the line integral along the edge of the plane by applying Biot-Savart law.
The extent of P can be calculated using the rate of change of x, x, =dx/du at
X, on S. But this may not be accurate when x, change rapidly.

More general way to introduce the extent of the region on the tangent plane
may be to use the projection of S on to P. Let the point on S is x’. A line L
passes the point x’ and perpenticular to P, is

x =x' +tn,
where t is a scalar function of u. If L intersects P,
p=n, -x=n,-(x +tn,)
from which we have
t=p—mn,-x.

Thus the position of the projected point and parametric derivatives on it can
be evaluated from the following relation.

x=x+(p—mn,-x)n,

Xy = X'y — (0, - X'y)n,

Xy =Xy — (ny - X )0,

and the corresponding Jacobian is given in the form

J(X) = x4 X Xo| = |J(%0) — (0, - X'0) (0 x X'3) + (0, - X'3) (0, x X'0)]



Since ) )
Ve ny - Va(=)dSx = [t x Vi (=)dly,
[ Vann Vi) = [ tx V()

the integral over P is evaluated as the line integral along the projected boundary.
Here t is the vector along the boundary. The line integral is evaluated by
successive subdivision.
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