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1 Introduction

Numerical techniques for the prediction of wave effects have achieved an
important role in offshore engineering, comparable to physical experiments.
For large structures it is appropriate in most cases to use the linear (or
weakly nonlinear) potential theory. This permits us to consider structures
of quite general geometrical form, for a broad variety of applications. We
restrict our attention here to fixed structures and vessels which are free to
move in small unsteady motions. Thus we exclude the seakeeping problem
for ships which are underway with substantial forward velocity.

The panel method, also known as the boundary integral equation
method (BIEM), has been widely used for this purpose. The fundamen-
tal basis for this method is a form of Green’s theorem where the velocity
potential at any point in the fluid is represented by surface distributions of
singularities over the boundary surfaces [1, 2, 3, 4]. Generally this leads to
an integral equation which must be solved for the unknown source strength
or dipole moment. This procedure was mainly of theoretical interest un-
til Hess and Smith [5] developed the panel method and demonstrated its
validity for three-dimensional bodies in unbounded fluid domains.

The method of Hess and Smith is referred to as the ‘low-order panel
method’, to distinguish it from various higher-order extensions. The essen-
tial steps in the low-order method can be enumerated as follows: (1) the
potential is represented either by a source distribution of unknown strength
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over the body surface (the ‘source formulation’), or by Green’s theorem
where the source strength is known and the dipole moment is equal to the
unknown potential (the ‘potential formulation’); (2) the body surface is
approximated by a large number N of small quadrilateral panels; (3) the
source strength and dipole moment are assumed constant on each panel,
giving a total of N unknowns; (4) in the source formulation the normal
derivative of the potential is evaluated at the centroid of each panel, and
set equal to the normal velocity at that point (in the potential formulation
the potential itself is evaluated directly at the same points) giving a total
of N linear equations for the unknown source strengths (or potentials); (5)
this system of equations is solved by standard methods of linear algebra; (6)
from this potential the pressure on each panel is evaluated, and integrated
to compute the required forces and moments. This method has been applied
in various fields of applied mechanics, particularly in aerodynamics [6].

Substantial efforts have been made to apply the same method to free-
surface problems involving floating or submerged bodies. The first free-
surface panel methods were hampered by the limitations of digital com-
puters, and also by the complexity of the free-surface Green function (i.e.
source potential). Nevertheless, important engineering analyses were per-
formed with crude representations of the geometry based on discretizations
with a few hundred panels, and often at considerable expense in terms of the
computing time. These difficulties have essentially vanished, due to parallel
improvements in the computers themselves (hardware) and the numerical
techniques (software).

Accurate numerical approximations of the free-surface Green function
were developed by Newman [7, 8] which are valid for all ranges of the fre-
quency and water depth. Based on this development, and with the use of an
iterative method of solution of the linear system developed by Lee [9], Ko-
rsmeyer et al [10] analyzed complex offshore structures such as a tension leg
platform (TLP) using up to 12000 panels to demonstrate the convergence
of the linear solutions.

With the facility to perform robust computations of the linearized
(first-order) potential, and with the growing importance of the TLP, ef-
forts were devoted to the development of programs capable of solving for
the second-order potential. (Here ‘second-order’ refers to the inclusion of
quadratic terms in the weakly nonlinear perturbation expansion of the po-
tential, which are proportional to the square of the wave amplitude.) Since
the structural resonances of TLP’s occur above or below the frequency
range of ocean-wave spectra, both the sum-frequency vertical loads and
the difference-frequency horizontal loads are important. Considerable effort
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is required to include all of the second-order hydrodynamic forcing effects
since it is necessary to consider various quadratic interactions, including the
inhomogeneous boundary condition which applies on the free surface. Sev-
eral of the resulting second-order panel methods are described by Molin &
Chen [11], Lee et al, [12], Eatock Taylor and Chau, [13] and Lee & Newman
[14]. Most of this work is based on the low-order panel method, because of
its relative simplicity in implementation.

The need for better efficiency and accuracy, especially in second-order
problems, motivated the development of higher-order methods where the
geometry and solution are represented by polynomials or other basis func-
tions. Eatock Taylor and Chau [13] and Liu et al [15] used isoparametic
elements where the body surface and solution are represented by piecewise-
continuous shape functions over each element. Okan and Umpleby [16]
and Hsin et al [17] solved two-dimensional infinite-fluid problems using B-
spline basis functions. B-splines are widely used for geometric modeling
in computer-added design (CAD) [18]. Thus it is possible to perform the
hydrodynamic analysis directly from the geometric models created by CAD
programs, without further approximation using piecewise higher-order el-
ements. A more fundamental advantage of using B-splines is that their
derivatives are continuous over the entire portion of the surface where the
geometry is continuous. The B-spline method was developed for three-
dimensional free-surface problems by Maniar [19], with further refinements
and applications described by Lee et al [20].

A fundamental extension, first presented by Lee [21], retains the B-
spline representation for the potential but permits the geometry to be de-
scribed by any explicit expressions representing continuous surfaces. This
provides great geometrical flexibility as the most convenient and suitable
representation can be used to define the geometry. Newman and Lee [22]
showed applications of this technique to several types of bodies represented
exactly by mathematical formulae. Lee et al [23] integrated this method-
ology with the kernel of the CAD program MultiSurf, to provide a flexible
and efficient analysis for various types of structures without the need to
generate an intermediate geometry input file.

Typically, the computational effort of panel methods is proportional to
O(N2) or O(N3). Here N is the number of unknowns. The Green function
is evaluated O(N2) times to set up the linear system. Then the solution
is evaluated either iteratively with O(N2) effort or by Gauss elimination
with O(N3) effort. This effort may be reduced down to O(N log N) using
acceleration algorithms such as the Fast Multipole Method (FMM) or the
precorrected Fast Fourier Transform (pFFT). FMM is based on the use of
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multipole expansion of the free surface Green function. The influence of the
Green function is calculated by systematic application of Graf’s addition
theorem of Bessel functions following the hierarchical algorithm of Green-
gard & Rokhlin [24]. Application to the analysis of floating structures with
up to 300,000 unknowns is made by Utsunomiya & Watanabe [25]. The
method is expected to be less efficient for deep water due to slow convergence
of multipole expansion of the Green function. The pFFT (precorrected Fast
Fourier Transform) method was proposed for the integral equations with a
general form of Green function by Phillips & White [26]. In the pFFT
method, the influences of sources or dipoles distributed on the body sur-
face, except in their vicinity, are approximated with sources (or dipoles) on
a uniform grid surrounding the entire body or bodies. The influences of
singularities on the nodes are evaluated by FFT with O(Ng log Ng) effort,
where Ng is the number of nodes of the grid. Korsmeyer et al [27] applied the
method to large complex offshore structures using up to 260000 unknowns.
Both FMM and pFFT seek the solution iteratively and the methods may
not be effective when the convergence is not sufficiently rapid.

In the following sections we provide more detailed descriptions of some
of the developments above. Section 2 outlines the analytical formulation
of the linear problem, including the boundary conditions, equations for the
velocity potential and fluid velocity, and appropriate modifications of the
integral equations that are used to remove irregular frequency effects and
to analyze bodies with zero-thickness elements. In Section 3 we describe
the numerical details associated with the low-order and higher-order panel
methods. In Section 4 the pFFT method is briefly described and in Section
5 the second-order problem is reviewed. In Section 6 methods are described
for the analysis of wave effects in the time domain. Section 7 includes a
summary and conclusions.

A few computational examples are presented to show typical results
and compare the different methods, based on the programs WAMIT [28] and
TiMIT [29]. Many other examples can be studied from the demonstration
program, documentation, and other publications which are available for
download from the website www.wamit.com.

2 Formulation

The Cartesian coordinate system x = (x, y, z) is used with z = 0 the plane
of the undisturbed free surface and z < 0 the fluid domain. It is assumed
that the fluid is incompressible, inviscid, and the flow is irrotational. The
fluid velocity is then represented at time t by the gradient of the velocity po-
tential Φ(x, t) satisfying the Laplace equation ∇2Φ = 0 in the fluid domain.
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The fluid depth is either infinite, with vanishing motion at large depths, or
constant with zero vertical velocity on the bottom boundary surface z = −h.
One or more bodies are situated within the fluid domain, floating on the free
surface or submerged. The portion of these bodies below the plane z = 0
is referred to collectively as the submerged surface Sb of the body or struc-
ture. This surface is assumed to be impermeable, with its normal velocity
equal to the normal component of the fluid velocity. At large horizontal
distances from the structure the wave field consists of a prescribed incident
wave system plus outgoing waves associated with radiation and scattering.
Surface tension is neglected.

2.1 The velocity potential and boundary conditions

Assuming small unsteady motions relative to the wavelength and relevant
length scales of the body, the free-surface boundary condition can be lin-
earized about z = 0. When the structure is not fixed, the body boundary
condition is also linearized about its mean position. A time-harmonic de-
pendence applies permitting the use of a complex notation for all oscillatory
quantities. Thus the velocity potential is expressed by

Φ(x, t) = Re
(
φ(x)eiωt

)
. (1)

Here ω is the frequency of the regular incident wave in the linear analysis.
The real part of the product of all complex quantities with the fac-

tor eiωt is understood hereafter. The linearized form of the free-surface
condition is

φz − Kφ = 0 (2)

on z = 0, where K = ω2/g and g is the acceleration of gravity. Subscripts
are used to denote partial differentiation with respect to the Cartesian co-
ordinates (x, y, z), normal vector n and time t. (Exceptions to this rule
are the symbols (nx, dSx, nξ, dSξ) which denote the normal vector or dif-
ferential surface elements with respect to the x or ξξξ coordinate systems,
respectively.)

The linearization permits the decomposition of the velocity potential
in the alternative forms

φ = φD + φR = φI + φS + φR. (3)

Here φI is the potential of the incident wave, defined by

φI = i
gA

ω
Z(z)e−iνx cos β−iνy sin β , (4)
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where A is the amplitude and β is the angle between the direction of
propagation of the incident wave and the positive x−axis. For infinite
water depth Z(z) = eKz and ν = K; for finite water depth h, Z =
cosh[ν(z + h)]/ cosh νh and the wavenumber ν is the positive real root of
the dispersion relation K = ν tanh νh. Except for the incident-wave poten-
tial φI , all components of the potential satisfy the radiation condition of
outgoing waves in the far field.

In (3) φS is the potential of the scattered field due to the presence
of the bodies and subject to the boundary condition φSn = −φIn on Sb.
φD = φI + φS is the solution of the diffraction problem where φDn = 0 on
Sb. (The definitions of the scattered and diffraction potentials are reversed
in some references.)

The radiation potential φR represents the fluid disturbance due to the
motions of the bodies and can be expressed in the form

φR = iω
∑

j

ξjφj , (5)

where ξj is the amplitude of motion in each degree of freedom considered.
For a single rigid body with six degrees of freedom, j = 1 to 6 corresponding
to surge, sway, heave, roll, pitch and yaw, respectively. The boundary
condition on the body surface is then expressed in the form

φjn = nj , (6)

where
(n1, n2, n3) = n, (n4, n5, n6) = x × n. (7)

Here n and x are the unit normal vector and position vector of points on the
body surface. The convention adopted here is that n points out of the fluid
domain, and thus into the body. Body rotations and moments are referred
to the origin x = 0.

In the case of multiple bodies which are moving independently, it is
straightforward to consider the additional degrees of freedom. For example,
j = 7, ..., 12 can be used to represent the same six degrees of freedom of the
second body with

(n7, n8, n9) = n, (n10, n11, n12) = x × n (8)

applied on the second body, and with the convention that the components
in (7) vanish on the second body while the components in (8) vanish on the
first body.
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In some cases it is useful to write the body boundary condition in the
more general form

φjn = uj(x) · n(x) (9)

where uj(x) is the displacement vector of the body boundary. The displace-
ment vector can represent general mode shapes such as those corresponding
to structural deflections, the motions of interior free surfaces inside moon-
pools, or multiple bodies with constraints [30],[31].

2.2 Integral Equations

In the potential formulation Green’s theorem is used to represent the veloc-
ity potential φ in the form

(
2π

4π

)
φ(x) +

∫∫
Sb

φGnξ
dSξ =

∫∫
Sb

φnGdSξ. (10)

Here the Green function G(x, ξξξ) corresponds physically to the potential of
an oscillatory source, located at the point x = ξξξ in the fluid domain and
subject to the same boundary conditions on the free surface and bottom as
φ, as well as the radiation condition. This Green function is well known,
and various representations are useful [4, 32]. In (10) the factor 2π applies
for points x on Sb whereas the factor 4π applies for points x in the interior
domain of the fluid. The radiation potential φR and scattering potential
φS can each be represented by (10). For the diffraction solution the more
compact integral equation

(
2π

4π

)
φD(x) +

∫∫
Sb

φDGnξ
dSξ = 4πφI(x) (11)

may be used. This has the advantage of a simpler right-hand side, and the
incident wave is included in the solution, but in cases where the scattering
effect of the body is relatively weak some accuracy may be lost due to the
dominant role of the incident wave.

In the special case where x is on Sb equations (10-11) give integral
equations which can be solved for the unknown potentials on the body
surface. After doing so, the same equations with the factor 4π can be used
to evaluate the potential at field points within the fluid.

Alternatively, in the source formulation, the velocity potential is ex-
pressed by a source distribution or single-layer distribution, in the form

φ(x) =
∫∫

Sb

σGdSξ, (12)
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where the source strength σ is unknown. Evaluating the normal derivative
on Sb leads to the integral equation for σ,

φn(x) = 2πσ(x) +
∫∫

Sb

σGnxdSξ, (13)

where the left-hand side is evaluated from the body boundary condition.
Special attention is required to correctly interpret the dipole integrals

in (10-11) and (13), involving Gnx or Gnξ
, when the point x is on Sb. In

this case a small area surrounding the singular point x = ξξξ is excluded
from the surface of integration, and the limit of the integral is evaluated as
this area tends to zero. The same consideration applies to modified integral
equations in Sections 2.5, 2.6 and 2.7 below. Further details are given in
[2, 3, 4].

The relative advantages and disadvantages of the potential and source
formulations are minor. Both involve the solutions of integral equations over
the body surface with essentially the same level of computational effort. The
potential formulation is more versatile, particularly in the representation of
structures with relatively thin elements, but one disadvantage is that the
evaluation of the fluid velocity requires second derivatives of the Green
function.

2.3 Linearized pressure force on the body

The total pressure in the fluid is given by Bernoulli’s equation

p = −ρ(Φt + ∇Φ · ∇Φ + gz). (14)

The first term on the right side of (14) is the linear component of the
dynamic pressure, which is written in the complex form as −iρωφ. The
second term is the quadratic pressure, which contributes to the second-
order forces. The third term is the hydrostatic pressure, which contributes
to the restoring forces.

The linearized hydrodynamic force (and moment) acting on the body
are represented by the exciting-force coefficients

Xi = −iωρ

∫∫
Sb

φDφindS, (15)

due to the diffraction pressure field, and by the added-mass Aij and damping
Bij coefficients

Aij − (i/ω)Bij = ρ

∫∫
Sb

φjφindS, (16)
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due to the radiation field. Here the boundary condition (6) has been used
and the index i corresponds to the component of the force (or moment),
defined with the same convention as for the components of the radiation
potential (5). For multiple bodies and generalized modes the definitions of
the normal vector (8) and (9) carry over to the pressure force. The second
index j in the added-mass and damping coefficients is associated with the
corresponding mode of motion of the body.

The exciting-force coefficients can also be evaluated from the Haskind
relations [2, 33]

Xi = −iωρ

∫∫
Sb

(φinφI − φiφIn) dS. (17)

2.4 Mean drift force on the body

The mean drift force (and moment) are important in many applications,
particularly for bodies which are freely floating or restrained by relatively
flexible moorings. The mean drift force is of second order in the wave ampli-
tude, but it can be evaluated from the first-order linear potential [34]. Two
alternatives are available including direct integration of the pressure on the
body surface and the method which depends on momentum conservation.
The pressure-integration method is more general, but it generally requires
a more accurate solution to avoid local numerical errors. The momentum
method is restricted to the horizontal components of the force and the verti-
cal component of the moment, acting either on a single body by itself or on
an ensemble of multiple bodies. In cases where both methods are applicable
it is advisable to compare their results for consistency and convergence. It
also is possible to use momentum conservation in the near field [35], which
retains some of the advantages of both methods for multiple bodies, but
this requires special programming and is not considered here.

For the pressure-integration method the contributions include the mean
component of the pressure (14) from the time-average of the square of the
fluid velocity, and products of the first-order pressure with the oscillatory
variations of the body surface due to both the body motions and the runup
at the waterline. The complete expression can be found in [28], Chapter 12
and [36].

In the momentum method the mean forces are expressed in terms of
the Kochin functions

H(θ) =
∫∫

Sb

(φBnφ0 − φBφ0n) dS, (18)
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where
φ0 = Z(z)e−iνx cos β−iνy sin β

and φB = φS + φR is the part of the total potential due to the body. With
this definition the drift force and moment are evaluated from the following
expressions [37, 33]:
(

F̄x

F̄y

)
=

ρν3

8πK

cp

2cg

∫ 2π

0

|H(θ)|2
(

cos θ

sin θ

)
dθ− ρωAν

2K

(
cosβ

sin β

)
ImH ′(π + β) (19)

M̄z =
ρν2

8πK

cp

2cg
Im

∫ 2π

0

H∗(θ)H ′(θ) dθ − ρωA

2K
ReH ′(β). (20)

Here cp is the phase velocity, cg is the group velocity, and the ratio

cp

2cg
=

Kh

Kh + (νh)2 − (Kh)2

is equal to one in the limit of infinite depth. In (20) H ′ denotes the derivative
of the Kochin function with respect to its argument, and H∗ denotes the
complex conjugate.

The momentum method can be extended to the case where two incident
waves are present with the same period and different heading angles [28].

2.5 Fluid velocity

Often it is necessary to evaluate the fluid velocity on the body surface, or
at points within the fluid. An important application is in the evaluation of
the mean drift force due to the quadratic pressure in (14). The quadratic
pressure also specifies the boundary conditions in the second-order nonlinear
problem which will be discussed subsequently.

For field points in the fluid it is straightforward to evaluate the gra-
dients of the potential as given by (10-12), by interchanging the orders of
differentiation and integration and replacing the Green function by its gra-
dient. However special attention is required to evaluate the velocity on the
body surface, due to the singularity of the Green function. The appropriate
representations in this case are

2π∇φ(x) +
∫∫

Sb

φ∇Gnξ
dSξ =

∫∫
Sb

φnξ
∇GdSξ, (21)

for the potential formulation derived from (10), and

∇φ(x) = 2πσ(x)n +
∫∫

Sb

σ∇GdSξ, (22)
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for the source formulation derived from (12).
Alternatively, for points on the body surface, the normal component

of the velocity can be evaluated from the body boundary condition and the
tangential components can be evaluated by differentiation of the solution
for φ on this surface. This scheme is not suitable in the low-order method.

2.6 Elements of zero thickness

If the thickness of Sb tends toward zero the integral equations and their
solutions are singular [38]. To overcome this difficulty a choice exists, either
to increase the thickness artificially, or alternatively to modify the integral
equations so that they apply to structures with elements of zero thickness.
In the latter case, which is considered here, the appropriate representation
of the potential is based on a distribution of dipoles only, also known as
a double-layer distribution. The integral equation can be derived formally
from the normal derivative of Green’s equation. The resulting equation is
analogous to the vortex distribution in lifting-surface problems [6].

The body surface is assumed to consist of two parts, a conventional
portion Sb with nonzero thickness and another portion Sd of zero thickness,
designated as the dipole surface. In this case the potential on Sb or in the
interior of the fluid can be represented in the form(

2π

4π

)
φ(x) +

∫∫
Sb

φGnξ
dSξ +

∫∫
Sd

∆φGnξ
dSξ =

∫∫
Sb

φnξ
GdSξ, (23)

where ∆φ is the difference of the potential on the two opposite sides of Sd.
When x is on the dipole surface Sd, the normal derivative of (23) can be
used to derive the equation∫∫

Sb

φGnξnxdSξ +
∫∫

Sd

∆φGnξnxdSξ = −4πφn(x) +
∫∫

Sb

φnξ
GnxdSξ. (24)

An appropriate pair of coupled integral equations for this problem follow by
using (23) for points on Sb and (24) for points on Sd to solve simultaneously
for the unknowns φ on Sb and ∆φ on Sd. In the diffraction problem the
right-hand sides of these equations are replaced by 4πφI(x) and 4πφIn(x).

2.7 Irregular frequencies

It is well known that the boundary-integral equations of wave problems in-
volving the free-surface Green function either possess no solution or have
a nonunique solution at a discrete set of irregular frequencies. For the po-
tential and source formulations based on the integral equations above, the
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irregular frequencies correspond to the eigenfrequencies of the homogeneous
Dirichlet problem where the fluid and free surface are inside the body [39].
In the vicinity of these irregular frequencies numerical solutions of the in-
tegral equations are erroneous. Several numerical techniques have been
developed to overcome this problem, by suppressing the occurrence of the
corresponding eigenmodes.

The first technique, proposed by Ohmatsu [40], is based on imposing
an extra boundary condition on the interior free surface, Si. The Green’s
integral equation is then extended to include Si where a homogeneous Neu-
mann condition is imposed, with the result

2πφ(x) +
∫∫

Sb

φGnξ
dSξ +

∫∫
Si

φGnξ
dSξ =

∫∫
Sb

φnGdSξ, x ∈ Sb,

−4πφ(x) +
∫∫

Sb

φGnξ
dSξ +

∫∫
Si

φGnξ
dSξ =

∫∫
Sb

φnGdSξ, x ∈ Si. (25)

More detailed discussion and the extension to the source distribution is
provided in [36] and [41]. This technique is widely used in free-surface
problems.

The second technique, first applied in related work on acoustic scat-
tering by Burton & Miller [42], is based on the idea that it is not possible
to have nontrivial eigensolutions of the mixed homogeneous boundary con-
dition φ + αφn = 0 when the complex constant α has a nonzero imaginary
part. The corresponding integral equation takes the form of a linear sum of
Green’s equation and its normal derivative

2πφ(x)+
∫∫

Sb

φ(Gnξ
+αGnxnξ

)dSξ = 2πφn+
∫∫

Sb

φn(G+αGnx )dSξ. (26)

Results based on this technique with the low-order method are presented in
[43]. However, experience has shown that the results based on this approach
converge more slowly than those based on Ohmatsu’s method.

The third technique [44, 45] is based on adding point singularities in
the interior region to absorb the energy of the eigenmodes. This method
is relatively simple to implement, but it fails in some cases unless special
attention is given to the positions of the singularities.

3 Numerical procedures

The principal numerical tasks to be performed in the panel method include
(1) representation of the geometry, (2) representation of the singularity
distributions and velocity potential on the body surface, (3) numerical inte-
gration of the singularity distributions (influence functions), (4) solution of
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the linear system, and (5) post-processing to evaluate the desired hydrody-
namic parameters such as integrated forces or local pressures and velocities.
Since most of these tasks are fundamentally different in the low-order and
higher-order methods, they are discussed separately in the subsections be-
low.

The procedures used to evaluate the free-surface Green functions, and
to solve the linear system of equations, are the same for both methods.
These are described briefly in the following paragraphs. Additional infor-
mation can be found in [28], Chapter 12.

Free-surface Green functions, and their derivatives, are usually ex-
pressed as the sum of one or more Rankine singularities and a ‘regular’
component which is added to satisfy the free-surface boundary condition
(2). The regular component includes a weakly-singular logarithmic term,
which must be treated separately when the source point is on or close to the
free surface. With this exception the regular component can be evaluated
using polynomial approximations and eigenfunction expansions [7, 8]. An
alternative scheme for the case of finite depth has been derived by Linton
[46].

The linear system of equations which must be solved for the unknown
singularity strengths, or for the coefficients of the B-splines in the higher-
order method, is of the standard form with N equations and N unknowns.
(Both are complex.) The conventional direct solver based on Gauss elim-
ination is robust, but requires O(N3) computations. For problems where
N is, say, greater than 1000, the iterative solver developed by Lee [9] is
generally preferred to reduce the computational time. In some cases the
convergence of the iterative solver is retarded due to ill-conditioning of the
linear system. In the low-order method this is usually caused by hydrody-
namic resonances, e.g. in the analysis of a structure with a moonpool. In the
higher-order method, where the linear system is not diagonally-dominant,
the direct solver is preferred unless N is large. A block iterative solver is
useful in some situations, combining to some extent the efficiency of the
iterative solver and the robustness of the direct solver.

The computational cost and memory allocation may be further reduced
by employing acceleration methods such as pFFT and FMM, as described
in the Introduction. The pFFT method is reviewed in Section 4.

3.1 Low-order method

The body surface is represented by a set of N quadrilateral panels. The
geometry input file, which contains the vertex coordinates of each panel,
should be prepared with a suitable pre-processor. A systematic set of two
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Figure 1: The submerged portion of a spar with three strakes and a con-
centric moonpool. The view is from below the structure, show-
ing the bottom and the lower part of the moonpool wall. The
exact structure is shown in the left figure (a). The principal di-
mensions are draft 100m, column radius 18m, moonpool radius
5m, and strake width 3.7m. The strakes are helical, and rotate
through 180 degrees. The discretized structure used for the low-
order method with N = 264 panels is shown in the right figure
(b). The dark lines in (a) represent the edges of the patches used
for the higher-order method, as described in Section 3.2.

or three input files should be used with increasing numbers of panels, to
test for convergence. As the number of panels is increased and their size is
decreased, the representation of the geometry should become increasingly
accurate and similarly for the hydrodynamic outputs. The best way to
confirm the accuracy of the results is to perform convergence tests in this
manner, and to observe the differences in the outputs. Ideally the panel sides
should be reduced by a factor of about two at each stage, implying a factor of
4 increase in N and a factor of (at least) 16 increase in the computing time.
This rapid increase in computing time, and the labor required to prepare
extra input files, tend to discourage the practice of testing for convergence.
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As a specific example to illustrate the discussion, Figure 1(a) shows the
submerged portion of a spar structure which consists of a cylindrical outer
surface, a cylindrical inner moonpool, and three helical strakes. Figure
1(b) shows a relatively coarse discretization of this structure, represented
by low-order panels with N = 264. Special attention has been given to
ensuring that the sides of contiguous panels correspond along the edges
where the strakes meet the cylinder outer surface, and where the outer and
inner surfaces meet the bottom, so there are no ‘gaps’. In this example the
panels are uniformly spaced. In applications where the local velocity near
corners is important, as in the evaluation of the mean drift force by pressure
integration, improved accuracy can be achieved by using nonuniform spacing
with smaller panels near the corners of the bottom and outer edges of the
strakes [47].

The integral equations (10-12) are evaluated by collocation, with x
equal to the coordinates of each panel centroid, to give a total of N equa-
tions. The integrals in (10-12) are carried out by summation over the corre-
sponding integrals over each panel, where the values of the potential, normal
velocity, or source strength are assumed constant. Thus the essential task is
to evaluate the N ×N matrices of influence functions, equal to the integral
over the panel i of the Green function or its normal derivative, evaluated at
the collocation point xj . For the regular part of the Green function these
integrations are evaluated simply as the product of the panel area and the
value of the integrand at the centroid. For the Rankine and logarithmic sin-
gularities the integrations are evaluated analytically when the singularity is
nearby, and using multipole approximations when the collocation point is
sufficiently far away from the panel. Suitable algorithms are derived in [48]
and [49].

After solving for the values of the potential or source strength on each
panel, the integrals required to evaluate the linear force coefficients (16-18)
are carried out by summation over each panel. The potential or veloc-
ity at points in the fluid are evaluated from (10-12) or (21-22) using the
same integration techniques as described in the preceding paragraph. The
linearized pressure and wave elevation are simply proportional to the po-
tential. The mean drift force and moment are evaluated in the pressure-
integration method using (22) to evaluate the velocity components on the
body and performing the surface integration in the same manner as above.
For the momentum method the Kochin function (18) is integrated in the
same manner. The azimuthal integrations in (19-20) can be performed with
adaptive Gauss-Chebyshev quadratures, recursively doubling the number of
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integration points until a specified tolerance is achieved.

3.2 Higher-order method

In the higher-order method, the integrals over the body surface and ex-
tended computational domains, such as the moonpool free surface, are car-
ried out by numerical quadratures [28]. Thus the method describing the
geometry is irrelevant to the solution procedure as long as the required
geometric information is available at the points required for the numeri-
cal quadrature. In this way, the geometry can be described in the most
convenient and accurate manner for a given body shape. The information
required for this purpose includes the Cartesian coordinates, represented
in terms of parametric coordinates as described below, and also the first
partial derivatives of these transformations.

B-splines are used to provide a continuous representation of the solu-
tion, where this is appropriate. The order of the B-splines can be selected to
ensure continuity of derivatives of the surface coordinates, i.e. the slope of
this surface, as well as higher-order derivatives. However the body surface
Sb may contain lines separating different continuous surfaces, as in the case
of the spar shown in Figure 1(a) where there are lines of discontinuity along
the outer and inner boundaries of the bottom and along the inner edges of
the strakes.

In order to separate sub-surfaces which are discontinuous in this sense,
we define each sub-surface by a separate ‘patch’. Eight patches are required
for the spar in Figure 1(a), including three for the separate parts of the
outer surface, three for the strakes, one for the bottom and one for the
inner surface. The patch boundaries are outlined with dark lines in Figure
1(a).

A pair of parametric coordinates (u, v) are used to map the surface
of each patch separately onto a square domain in parametric space. Thus
the Cartesian coordinates of the points on each patch are defined by the
mapping functions

x = X(u, v), y = Y (u, v), z = Z(u, v). (27)

For example, the annular bottom of the spar, which covers the radial space
a < r < b and the azimuthal range −π < θ < π, is mapped onto the square
−1 < u < 1 and −1 < v < 1 by means of the transforms

r = a
1 − u

2
+ b

1 + u

2
, θ = πv.

A cut is required along the radial line θ = π as shown in Figure 1(a).
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On each patch the velocity potential is represented by a tensor product
of B-spline basis functions

φ(u, v) =
Mv∑
j=1

Mu∑
i=1

φijUi(u)Vj(v). (28)

Here Ui(u) and Vi(v) are the B-spline basis functions of u and v, and Mu

and Mv are the number of basis functions in u and v, respectively. The
unknown coefficients φij are determined by substituting this potential in
the integral equation (10) or (11) and using a Galerkin procedure. More
specifically, both sides of the integral equation are multiplied by the same
set of basis functions, and integrated again over the boundary surface. The
result is a linear system of equations for the coefficients φij . The number
of unknowns on each patch is Mu ×Mv and the total number of unknowns
is the sum of this product over all patches.

The accuracy of the representation (28) depends on the order of the
basis functions and the numbers of these functions Mu and Mv. Generally
we use basis functions of order three (quadratic) or four (cubic). These
ensure continuity of the first or second derivative, corresponding to the
tangential velocity or its gradient on the body surface, respectively. In order
to control the number of basis functions we extend the geometric notion
of panels by subdividing the parametric domain of each patch into Nu ×
Nv panels. It is important to note that, while these panels correspond to
rectangles in the parametric space, they conform exactly to the body surface
as defined by the mapping functions (27). Thus the physical manifestation
of each panel is not restricted to be flat or rectangular.

The number of basis functions and the number of panels are related
by

Mu = Nu + Ku − 1, Mv = Nv + Kv − 1, (29)

where Ku and Kv are the orders of the B-splines. Further information
regarding the B-spline basis functions can be found in [18]. In standard
B-spline terminology, the subdividing points between panels correspond to
knots. Important advantages of the higher-order method are that the geom-
etry can be defined exactly, or with whatever precision is deemed appropri-
ate, separately from the solution for the velocity potential. The accuracy of
the solution is then controlled simply by increasing the number of panels.
This greatly facilitates the performance of convergence tests.

All of the required integrations in the higher-order method are per-
formed using Gauss quadratures in parametric space. These include the
inner integrations in the integral equations (10) or (11), the outer integra-
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tions used in the Galerkin procedure, and ultimately the surface integrations
required for post-processing to evaluate the hydrodynamic force coefficients,
Kochin functions, or the potential and velocity at points in the fluid. Special
algorithms are used to remove the Rankine and logarithmic singularities in
the Green functions, when required. Further details are given in [28].

3.3 Computational example

In order to provide an illustration of the relative efficiency and accuracy of
the low-order and higher-order methods, we shall consider the diffraction
problem for the spar buoy shown in Figure 1(a). In both methods the thick-
ness of the strakes is ignored and they are modeled as zero-thickness ele-
ments. The analysis is then made by applying the coupled integral equations
(23) and (24). Later, the same geometry is used to illustrate a method for
evaluating the wave elevation inside the moonpool using generalized modes.

The integral equation is solved with three different discretizations in
both the low- and higher-order methods, to examine the convergence of
the computational results. In the low-order method, the numbers of panels
N are 264, 1056 and 4224 and the dimension of the linear system is the
same. The first of these three representations is shown in Figure 1(b).
The solution of the linear system is obtained iteratively, which is more
efficient than the Gauss elimination for large N . The computing times per
frequency for the diffraction solution with one wave direction are 0.2, 3 and
60 seconds, respectively, in ascending order of N , on a PC with a 1 GHz
Pentium processor. For additional wave directions, or radiation solutions,
the computing time would increase somewhat, due to the need for separate
iteration for the solution of the linear system for each of these solutions.

In the higher-order method 46, 184 and 736 subdivisions are used.
Third-order B-spline basis functions are used on all patches. The corre-
sponding numbers of unknowns N are 162, 384 and 1104. The resulting lin-
ear system is solved directly using Gauss elimination. The iterative method
is not effective for the linear system resulting from the Galerkin approach,
which is adopted in the higher-order method. However since the dimension
of the linear system is relatively small in the higher-order method, the use
of the direct method is not a practical problem. The computing times per
frequency for one wave direction are 0.5, 7, 115 seconds, respectively. The
additional time required is negligible for the diffraction solutions at other
wave directions, or for the radiation solutions, since these are obtained by
back substitutions.

Figure 2 shows comparisons of the surge exciting force and yaw moment
based on the two methods, for a range of wave periods. For this structure the
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Figure 2: The surge force (a) and yaw moment (b) on the spar. The force is
normalized by ρgAL2 and the moment by ρgAL3 where ρ is the
water density, g the gravitational constant, A the incident wave
amplitude and L is the radius of the spar. The lines represent
the higher-order method and the symbols represent the low-order
method. Dashed, dash-dot and solid lines correspond to N =
162, 384 and 1104, respectively. Triangles, circles and squares
correspond to N = 414, 1656 and 6264.

yaw moment is due entirely to the pressure difference across the opposite
sides of the strakes. Thus the yaw moment is relatively small. For both
modes, the results based on the higher-order method are more accurate and
rapidly convergent. This can be seen more clearly in Figure 3, which shows
the absolute errors at the period of 12 seconds where the surge force peaks.
Here the error is defined as the difference based on the higher-order method
using 3648 unknowns.

The irregularity of the yaw moment near 20 seconds is due to the
pumping-mode resonance in the moonpool. The resonant period can be
estimated from the formula T = 2π

√
D/g = 20.0, where D is the draft (cf.

[3], equation 3.87). The actual resonance occurs at 20.4 seconds. In a narrow
moonpool such as this, the sloshing resonances occur at high frequencies and
are of less practical concern. The pumping mode is highly tuned, as shown
in Figure 4, with the peak of the computed elevation at the center of the
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Figure 3: Absolute errors in the surge force (a) and yaw moment (b), plotted
vs. the number of unknowns for the period 12 seconds. The solid
line is the result from the higher-order method and the dashed
line from the low-order method. Other definitions are the same
as those in Figure 2

moonpool 76 times the incident-wave amplitude. Thus it is important to
correct for the damping effects associated with separation near the bottom
corners of the moonpool and other sources of viscous drag.

A semi-empirical damping correction can be included by using gen-
eralized modes to represent the free-surface motion of the moonpool, as
described in [28], Appendix A17. For this purpose a radiation solution φ7

is included as a generalized mode to represent the pumping mode. The
appropriate boundary condition (9) is with u7 = (0, 0, 1) on the free sur-
face inside the moonpool and u7 = (0, 0, 0) on Sb. Thus the computational
domain is extended to include the free surface in the moonpool. The gen-
eralized mode is included in the equations of motion, with zero mass and
gravitational restoring forces imposed but with a constant coefficient of ex-
ternal damping. After the solution is obtained, the response amplitude ξ7

represents the average amplitude of the free surface elevation inside the
moonpool. Additional modes can be included to represent sloshing modes
in the moonpool, but this is not necessary in the present example.

The validity of this technique is confirmed by Figure 4a, which com-
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Figure 4: Amplitude of the free surface elevation at the center of the moon-
pool, normalized by the incident wave amplitude (a), and the yaw
moment (b). The symbol (+) denotes the results obtained from
the diffraction solution. Lines denote the results using a gener-
alized mode for the pumping mode. Numbers are the linearized
damping coefficient in N/(m/s).

pares the free-surface elevation at the center of the moonpool obtained from
(10), using the diffraction solution with a conventional free-surface boundary
condition imposed in the moonpool, and the amplitude of the generalized
mode ξ7 computed without external damping. Also shown are results with
various values of the damping coefficient applied to the pumping mode. A
relatively small damping force suppresses the large elevation due to the res-
onance in the pumping mode. The wave elevation approaches the incident
wave amplitude inside the moonpool for long waves. Further reduction of
the elevation below the incident waves requires a significantly larger damp-
ing force, as may be expected. Figure 4b shows the same comparison for
the yaw moment, confirming that the irregularity noted in Figure 2 is also
removed by the moonpool damping.

4 The pFFT method

The traditional approach for the solution of the integral equations in the
low-order method is described in the preceeding sections. The influence
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matrices of the discrete linear system are dense and the iterative method of
solution requires O(N2) effort where N is the number of panels. To make
the iteration efficient, O(N2) memory allocation is necessary to store all
elements of the matrices. As an example, in the solution of the potential
formulation, we evaluate the influence matrix due to normal dipoles, D,
and its product with the solution Dφ. Separating the influence from the
nearby dipoles, Dn, and that from the far field, Df , the above product may
be evaluated separately by Dnφ and Dfφ. Dn is sparse and its evaluation,
storage, and product with φ are all O(N). Dfφ can be evaluated by the
pFFT method without explicit evaluation of Df .

It is convenient to consider the procedure of pFFT in three steps,
namely the projection, convolution and interpolation following Phillips &
White [26]. The procedure can be summarized in the form

Dfφ = I(x,xg)C(xg; ξξξg)P (ξξξg, ξξξ)φ(ξξξ) (30)

where xg and ξξξg are the coordinates of the nodes of a uniform grid sur-
rounding the entire body and P , C and I denote the matrices representing
each of three steps. φ = φ(ξξξ) is the unknown velocity potential.

The projection calculates the strength of point wave sources on the
nearby nodes of each panel such that the influence from the point sources
is equivalent to the influence of the panel at the far field. The projection
matrix P is Ng × N where Ng is the number of grid nodes. It is a sparse
matrix, however, because only nearby nodes of each panel are considered.
Each column vector of P , denoted by Pj(ξξξg), represents the projection of
each panel. This may be evaluated from∫∫

panelj

Gnξ
(x; ξξξ)dSξ =

∑
G(x; ξξξg)P

T
j (ξξξg) (31)

using appropriate control points at the far field in place of x. The summa-
tion is over the nearby grid nodes.

After the projection is completed, the wave sources on the body surface
are replaced by point sources on the grid nodes with the source strength
φg = Pφ. The influence of each source at the other nodes can be evaluated
by three-dimensional convolution. The influences between the nodes in the
near field, including the self-influence, are not relevant and arbitrary values
may be assigned to them. The influence of the wave source is decomposed
into two components, one from GT (x − ξ, y − η, z − ζ) and the other from
GH(x − ξ, y − η, z + ζ). On a uniform grid GT leads to a triply-nested
Toepliz matrix and GH to a doubly-nested Toepliz matrix in x and y and a
Hankel matrix in z. From these matrices, it is straightforward to construct
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two circulant matrices with periodic elements as shown in [26]. Finally, the
products of the circulant matrices and φg can be evaluated efficiently from
the relation Cφg = F−1[F (C1)F (φg)] where C1 denotes the first row of the
circulant matrices and F and F−1 denote the discrete Fourier transform and
the inverse Fourier transform, respectively [50]. The computational effort
for the convolution is O(Ng log Ng) and the memory allocation is O(Ng).

The interpolation calculates the potentials at the collocation points
from those at nearby nodes. The interpolation matrix I is N ×Ng and each
row represents the interpolation for each collocation point. I is sparse with
nonzero elements only for the nearby nodes of the collocation points. The
row vectors, Ii(ξξξg), may be obtained in a similar manner for Pj from

G(x; ξξξi) =
∑

G(x; ξξξg)Ii(ξξξg) (32)

using appropriate control points at the far field in place of x.
The pFFT method is reviewed here in conjuction with the low-order

method. While the Galerkin approach adopted in the higher-order method
produces a more compact form, it leads to a linear system which is not
diagonally-dominant, and thus it may be unsuitable for the iterative solution
method. As suggested in [19], this is because 2π, arising from the self-
influence, is distributed to the off-diagonal terms spanned by the B-spline
basis function in the Galerkin approach.

number of cylinders number of unknowns time per iteration
20 by 5 9600 0.2
36 by 9 31104 0.8
60 by 15 86400 3.4
100 by 25 240000 7.6

Table 1: The size of the linear system and the computational time required
for one iteration, based on pFFT method. The CPU time is mea-
sured in seconds on a PC with a 1GHz Pentium processor.

In order to illustrate the computing time based on the pFFT method,
arrays consisting of multiple cylinders of identical shape are considered.
This type of structure may also be analyzed by the method described in [53].
The radius of the individual cylinder is 11.5m and the draft is 20m. The
spacing between the adjacent cylinders is 40m. Each cylinder is represented
by 96 panels. Four different arrays are considered as shown in Table 1.
The largest array, which spans an area of 4km by 1km, is typical of some
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structures which have been considered for floating airports. Table 1 shows
the number of unknowns and corresponding computational time required
for each iteration based on the pFFT method.

Figure 5: Mean drift force in the transverse direction on a large array of
cylinders (square symbols) and a barge (line). Both structures
occupy a horizontal area 4km long by 1km wide, and have the
same displaced volume. The wave direction is at 45 degrees from
the sides. The drift forces are normalized by ρgA2L where ρ is
the water density, g the gravitational constant, A the incident
wave amplitude and L = 2km.

The required number of iterations and thus the computing time for the
solution of the linear system varies significantly depending on the period of
the incident waves. For example, when N=240000, the number of iterations
required to reach the average of the element of the residual vector equal to
1.E-4 gradually increases from 16 for the wave period 31.4 seconds to 400
for 8.33 seconds. The required memory is about 1Gb when N=240000, and
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increases linearly with N .
In Figure 5, a comparison is made of the mean drift force on the largest

array in Table 1 and on a barge with the same horizontal dimensions, 4km
by 1km, and with the same volume as the array. Thus the draft of the
barge is 5m. The barge is discretized with 43000 panels and analyzed by the
pFFT method as well. The wave direction is 45 degree from the longitudinal
direction. The mean drift forces are evaluated by the momentum method
described in Section 2.4. The comparison shows that the mean drift force
on the array of cylinders is an order of magnitude smaller than on the barge.

5 The second-order problem

The second-order potential, which results from quadratic interactions be-
tween the first-order quantities with frequencies ωi and ωj , is given by

Φ(2)(x, t) = Re{φ+(x)eiΩ+t + φ−(x)eiΩ−t}, (33)

where an explicit distinction is made between the sum (+) and difference
(−) frequency-components with the respective frequencies Ω± = ωi ± ωj .
These may be further decomposed in the form

φ± = φ±
I + φ±

S + iΩ± ∑
k

ξ±k φ±
k . (34)

Here ξ±k is the second-order component of the motion amplitude. The radia-
tion potential φ±

k is subject to the same conditions as the radiation potential
in the linear problem described in Section 2, but with the frequency Ω± sub-
stituted in the free-surface condition (2). φ±

I and φ±
S will be referred to as

the second-order incident-wave and scattering potentials. These potentials
are subject to inhomogeneous free-surface conditions, with the forcing equal
to

q±f =
i
4
ωiφi(φj

(∗)
zz −Kjφj

(∗)
z )± i

4
ωjφ

(∗)
j (φizz−Kiφiz)−

i
2
Ω±∇φi·∇φ

(∗)
j . (35)

Here Ki,j = ω2
i,j/g and φ

(∗)
j denotes either φj or its complex conjugate for

q+
f or q−f , respectively. This forcing can be further decomposed in the form,

q±f = q±I + q±S . q±I represents the forcing due to the interaction of two linear
incident waves only in (35) and is defined over the entire free surface. q±S
is the rest of the forcing which includes the quadratic interactions between
the incident and the body disturbance waves, φB= φS + φR and also the
quadratic terms associated with φB alone.
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The second-order incident-wave potential, φ±
I , subject to the forcing

q±I on z = 0, is given in the form

φ±
I =

q±I (x, y)Z(k±z)
−Ω± + gk± tanh k±h

(36)

where k± =
√

ν2
i + ν2

j ± 2νiνj cos (βi − βj). In the case of infinite water

depth, when βi = βj , q+
I and φ+

I both vanish.
The second-order scattering potential, φ±

S , is subject to the free-surface
condition −Ω±φ±

S + gφ±
S z = q±S on z = 0 and the body boundary condition

φ±
S n = q±b on Sb. The body forcing q±b is equal to −φ±

I n for fixed bodies. If
the bodies oscillate, q±b is complicated due to the first-order body motions.
The complete expression of q±b , in this case, can be found in [34] and in the
equations (3.11) and (3.12) of [36].

Green’s theorem is applied to the Green function of the linear problem
and φ±

S to give a representation for the latter in the form
(

2π

4π

)
φ±

S (x) +
∫∫

Sb

φ±
S Gnξ

dSξ =
∫∫

Sb

q±b GdSξ +
∫∫

Sf

(q±s /g)GdSξ (37)

where Sf denotes the free surface exterior to the bodies. The closure integral
in the far field vanishes due to the radiation condition of φ±

S [51].
After the solution of (37) is obtained, the force on the body can be

evaluated in the form

F±
p = −iρΩ±

∫∫
Sb

(φ±
I + φ±

S )φ±
k n

dS (38)

where φ±
k is the radiation potential in equation (34). Alternatively, in the

‘indirect’ approach introduced by Molin [51] and Lighthill [52], the force can
be evaluated without explicit solution of φ±

S from

F±
p = −iρΩ±[

∫∫
Sb

(φ±
k φ±

S n + φ±
I φ±

k n)dS +
∫∫

Sf

(q±S /g)φ±
k dS]. (39)

In this context φ±
k is also known as the ‘assisting potential’.

In (37) and (39) the evaluation of the integrals over the infinite ex-
tent of the free surface Sf is a major computational burden. To evaluate
these integrals efficiently, the free surface is divided in two parts, separated
by a ‘partition’ circle. This circle should be sufficiently large so that the
evanescent terms are negligibly small in the region outside. These evanes-
cent modes tend to zero in proportion to the factors e−r/h in finite water
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depth and (Kr)−3 in infinite depth, where r is the radial coordinate. In
general, the computational effort increases with the water depth.

In the region outside the partition circle the wave source, the first
order potentials and the assisting potential are expanded in Fourier-Bessel
series. After integrating the trigonometric functions with respect to the
angular coordinate, the integrals are reduced to sums of one-dimensional
integrals of triple products of Hankel and Bessel functions in the radial
coordinate. The latter integrals are nontrivial, but they can be evaluated
numerically with appropriate algorithms which are described in detail in the
Appendix B of [36]. Inside the partition circle direct numerical quadratures
are used. When the partition circle is large, it is useful to introduce a
smaller concentric circle separating the inner region close to the bodies
and an annular region between the two circles. In the inner region the
free surface is subdivided using panels and the integration is carried out in
a piecewise manner by numerical quadratures. In the annular region the
Gauss-Chebyshev and Gauss-Legendre quadratures are used with respect
to the angular- and radial-coordinates, respectively, as discussed in [28].

Figure 6: Fish-eye view of FPSO and the free surface discretization on the
inner region.

In addition to the second-order velocity potential, the quadratic pres-
sure acting on the mean body surface due to the interactions of the first
order quantities contribute to the second-order force. This force is defined
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as the quadratic force F±
q . When two linear frequencies are the same, F−

q

is equal to the mean drift force discussed in Section 2. The complete ex-
pressions for F±

q can be found in [36].
The sum-frequency velocity potential decays slowly in depth and is

the dominant cause of high-frequency vertical forces on structures such as
TLPs. It is also important for the prediction of the free surface elevation
near structures. Applications of panel methods to various problems where
the sum-frequency solution is important are discussed in [11] - [15]. On the
other hand, in the prediction of the slowly-varying horizontal forces, the
difference-frequency velocity potential is often ignored because the mean
drift force provides a reasonable approximation when the difference fre-
quency is small. In light of recent interest in FPSO’s where the control of
the slowly varying motion is important, the difference-frequency force on a
generic form of FPSO is calculated for a range of difference frequencies to
illustrate the relative importance of the complete difference frequency forces
in this case.

The FPSO used for this example is shown in Figure 6, together with the
discretization of the inner free surface. The ship’s length is 300m, the beam
50m and the draft 25m. The higher-order method is used for this analysis,
with the shape of the FPSO defined analytically using seven patches on
one side of the body. Three patches describe the bow, midship and stern,
respectively, and one patch is on the transom. Three patches are used to
connect the stern to the transom preserving geometric continuity. Thus the
velocity potential and the fluid velocity on the body surface are continuous
except on the vertical line at the bow. Except in the vicinity of this line,
the tangential fluid velocity on the body surface can be evaluated from the
analytic derivative of the B-spline basis function. On the free surface inside
a circle of radius 200m, the integration of the quadratic forcing is made
using flat panels as shown in Figure 6. The intermediate annular region
extends outward 100m to the partition circle of radius 300m.

Figure 7(a) shows the second-order difference-frequency sway force on
the FPSO in a beam sea. Five values of the difference frequency are in-
cluded, with δω = 0. 0.05, 0.1, 0.15 and 0.2 radians. The force corre-
sponding to δω = 0 is the mean drift force. The separate components of
the second-order difference frequency force are plotted in Figures 7(b-d).
Figure 7(b) shows the magnitude of the quadratic force Fq. It is interesting
to observe that Fq is close to the mean drift force for the higher frequen-
cies where the first-order pressure acting on the oscillatory variations of the
body surface due to the runup at the waterline is dominant. On the other
hand, Fq is significantly different from the mean force for the lower frequen-
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cies where the quadratic product of the fluid velocity is important as well.
Figure 7(c) shows that the component due to the second-order incident and
scattering waves increases more rapidly as the average frequency increases
for larger δω. The component due to the free-surface forcing, which is shown
in Figure 7(d), does not increase as rapidly but still contributes significantly
when δω is large.

Figure 7: Second-order difference-frequency sway force on the FPSO. δω is
the difference of the two linear wave frequencies and ω is their
average. (a) shows the total force. The quadratic force Fq is
shown in (b). (c) shows the force component due to the incident
wave and its scattering due to the presence of the body. (d) shows
the component due to the quadratic forcing on the free surface.
The sum of the last two components is Fp.

For these computations third-order B-splines are used to represent both
the first- and second-order solutions, with 69 patch subdivisions. The total
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number of unknowns is 175. On the free surface, one half of the inner
region is discretized with 1426 panels. On the intermediate region, 6th
order Gauss-Chebyshev and 10th order Gauss-Legendre quadratures are
used. The computational results are converged within 1% compared to the
results from finer discretization. The computational time for the complete
second-order solution for each difference frequency is about 1 minute on a
PC with a 1 GHz Pentium processor.

For bodies with sharp corners, such as a vertical truncated cylinder,
the tangential fluid velocity is unbounded at the corners. The quadratic
forces evaluated from the product of fluid velocities and the product of
fluid velocity and the body motion are significanly less accurate than the
linear forces. The accuracy of the second-order forces are also affected
similarly. Nonuniform geometric mapping near the corners improves the
accuracy somewhat, as discussed in [22] and [23].

6 Time-domain impulse-response functions

Some applications require solutions in the time domain, instead of the more
common analysis in the frequency domain. Important examples include
the coupled analysis of linear hydrodynamic loads with nonlinear structural
response or with nonlinear viscous forces. For such problems the hydro-
dynamic loads can be described in the time domain by impulse-response
functions (IRF’s), which correspond physically to the response of the body,
as a function of time t, to canonical impulsive disturbances at t = 0.

For the radiation forces, corresponding to the added-mass and damp-
ing coefficients (16), it is customary to define the IRF Lij(t) as the i-th
component of the force acting on the body in response to impulsive motion
in mode j, in otherwise calm water. Different types of impulsive motion
can be defined, as discussed in [29]. It is assumed here that the acceleration
of the body is a delta-function δ(t), and the velocity is a unit-step-function
H(t) increasing from zero to one at t = 0. In an analogous manner we define
an impulsive incident wave, moving in a specified direction β, such that the
wave elevation at the origin x = 0 is equal to δ(t); for t < 0 there are no
waves ahead of the origin, and vice versa.

As in other fields of linear systems theory, physically relevant incident
wave systems and body motions can be constructed from these canonical
IRF’s by superposition. Simulations and solutions of the time-domain equa-
tions of motion can be computed by time-convolutions of the IRF’s and body
motions. Moreover, the IRF’s can be related to the corresponding force co-
efficients in the frequency domain by Fourier transformation. This permits
the use of outputs from frequency-domain panel programs for time-domain
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analyses. A technique for performing this transformation is described here.
For the radiation forces, the fundamental relations between the time-

and frequency-domain express the added-mass coefficient Aij and damp-
ing coefficient Bij in terms of Fourier transforms of the IRF Lij(t) by the
following relations [29, 37]

Aij(ω) − Aij(∞) =
∫ ∞

0

Lij(t) cosωt dt, (40)

Bij(ω) = ω

∫ ∞

0

Lij(t) sin ωt dt. (41)

The inverse-transforms of (40-41) give alternative relations for the IRF:

Lij(t) =
2
π

∫ ∞

0

[Aij(ω) − Aij(∞)] cosωt dω, (42)

Lij(t) =
2
π

∫ ∞

0

Bij(ω)
ω

sin ωt dω. (43)

Fundamental properties of the IRF’s for the radiation forces are that these
functions are real, and from the principle of causality they must vanish for
t < 0.

Similar relations exist for the exciting forces (15) and (17), where we
define the corresponding IRF’s by Ki(t). These functions are real, but
unlike the radiation IRF’s they are nonzero for t < 0 since the incident-
wave system is present for both negative and positive times. With the
appropriate physical ranges (0 ≤ ω < ∞) and (−∞ < t < ∞), the complex
Fourier transforms are as follows:

Xi(ω) =
∫ ∞

−∞
Ki(t)e−iωt dt, (44)

2πKi(t) =
∫ ∞

−∞
Xi(ω)eiωt dω. (45)

Since Ki is real, Xi(−ω) = X∗
i (ω), and thus

2πKi(t) =
∫ ∞

0

[
Xi(ω)eiωt + X∗

i (ω)e−iωt
]

dω, (46)

or
Ki(t) =

1
π

∫ ∞

0

[Re(Xi) cos ωt − Im(Xi) sin ωt] dω. (47)

The principal computational task required to obtain the IRF’s is to
evaluate (42) or (43), and (47). For this purpose the frequency-domain
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coefficients should be evaluated at a large number of uniformly-spaced fre-
quencies ωn. Here n = 0, 1, 2, ..., N , ω0 = 0, and ωn+1−ωn = ∆ is constant.
This permits the use of Filon quadratures to perform the numerical integra-
tion in an accurate and efficient manner for all physically relevant values of
time (cf. [54], equation 25.4.47).

Figure 8: Surge and heave impulse-response functions L′(t) for the ISSC
TLP. The solid and dashed/dot lines are derived from computa-
tions in the frequency domain using the alternative transforms
(42) and (43). The dashed lines are from the low-order time-
domain program TiMIT. These results are normalized by the fac-
tor ρgL2 where L = 43.125m is the half-spacing between adjacent
columns.

Special considerations must be given to the limits ω = 0 and ω = ∞.
Since the damping coefficient vanishes in both of these limits, it is generally
preferable to use (43) instead of (42). On the other hand it is useful to
compare these two complimentary integrals, and thus worth some effort
to evaluate (42). In general the added mass is nonzero in both limits.
These can be evaluated as special cases where the free-surface condition
(2) is replaced by homogeneous Neumann (φz = 0) and Dirichlet (φ = 0)
conditions, respectively, with solutions following from the method of images.
With respect to (47), the exciting forces are effectively hydrostatic in the
limit ω = 0, and can be evaluated directly or by extrapolation from adjacent
small nonzero frequencies. When ω = ∞ the exciting forces vanish.

In view of these considerations it is appropriate to truncate the semi-
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infinite range of integration in (43) and (47) at a sufficiently large frequency
Ω = ωN = N∆, testing that N is sufficiently large and that ∆ is sufficiently
small by performing convergence tests. A similar procedure is used for
(42), but with the addition of a truncation correction. For this purpose an
asymptotic approximation for the added mass at high frequencies can be
derived by partial integration of (40):

Aij(ω) − Aij(∞) = − 1
ω

∫ ∞

0

L′
ij(t) sin ωt dt � −L′(0)ω−2. (48)

Here the neglected integral is of order ω−3.

Figure 9: Surge and heave exciting-force impulse-response functions K(t)
for the ISSC TLP. The solid lines are derived from computations
in the frequency-domain using (47). The dashed lines are from
the low-order time-domain program TiMIT. These results are
normalized by the factor ρ(gL)3/2 where L = 43.125m is the
half-spacing between adjacent columns.

The truncation correction for (42) is defined by

Λij(t) =
2
π

∫ ∞

Ω

[Aij(ω) − Aij(∞)] cosωt dω. (49)

This can be approximated, using (48), if Ω is sufficiently large:

Λij(t) � − 2
π

L′
ij(0)

∫ ∞

Ω

ω−2 cosωt dω = − 2
πΩ

L′
ij(0) [cosΩt + Ωt si(Ωt)] .

(50)
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Here we follow the notation of [54] (equation 5.2.26) for the sine integral
∫ ∞

z

sin t

t
dt = −si(z).

The constant L′
ij(0) can be evaluated by differentiating (43), with the result

L′
ij(0) =

2
π

∫ ∞

0

Bij(ω) dω � 2
π

∫ Ω

0

Bij(ω) dω. (51)

Thus

Λij(t) � − 4
π2Ω

[cosΩt + Ωt si(Ωt)]
∫ Ω

0

Bij(ω) dω. (52)

Results are shown in Figures 8 and 9 for the ISSC TLP. Figure 8
shows the time-derivatives of the radiation IRF’s for surge and pitch, and
Figure 9 shows the exciting forces. The frequency-domain computations
were performed using the higher-order method, with exact representation
of the geometry as explained in [28], Appendix A14. A total of 101 fre-
quencies were used, with ∆ = 0.05 radians/second. The other inputs are
the same as in [28], Appendix A14, with the exception that the parameters
used to specify the number of basis functions on each patch were doubled.
(This resulted in a total of 384 unknowns in the linear system.) In Figure
8 separate curves are plotted based on (42) and (43) above; these are prac-
tically indistinguishable within graphical precision. Also shown in Figures
8 and 9 are computations performed directly in the time domain using the
low-order program TiMIT [29] with 1012 panels on one quadrant and the
same number of unknowns. (This panelization and the geometry of the
body are described in [28], Appendices A6 and A7.) The effects of wave in-
teraction between the columns are significant, and these result in IRF’s with
noticeable oscillatory features. Thus the comparisons shown in Figures 8
and 9 are considered to be representative of relatively complex applications.
(The derivative L′(t) is plotted in Figure 8 to facilitate comparison with the
results from TiMIT, where the body velocity rather than the acceleration
is equal to δ(t). The derivatives of (42) and (43) shown in Figure 8 are
evaluated numerically, by first-order finite differences using a time-step of
0.2 seconds.)

7 Summary and Conclusions

This Chapter describes the development of panel methods applied to the
first- and second-order analysis of wave interaction with stationary bodies.
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The relevant boundary-value problems and the integral-equation formula-
tions are reviewed. Detailed discussion on the solution procedure is provided
to contrast the low-order and higher-order panel methods. The pFFT ac-
celeration method is also discussed, reflecting recent interest in very large
offshore structures. Also presented is a numerical technique to transform
frequency-domain results into impulse-response functions suitable for use in
time-domain simulations.

The higher-order panel method described here makes use of B-splines
to represent the velocity potential. Naturally the pressure and the fluid
velocity are continuous on each patch and can be evaluated at any point.
This is particularly useful for interfacing with structural analysis programs
where the pressure is required at a large set of prescribed points on the
body surface. Continuity of the solution is also highly advantageous in
cases where the pressure and velocity fields are required over a dense mesh
as inputs to a Navier-Stokes solver, to account for localized viscous effects.

A distinctive feature of the higher-order method presented here is that
the solution procedure is completely independent from how the geometry
is prescribed. Thus the method can be applied to any geometric model
made with continuously-defined surfaces. This provides great flexibility for
a broad range of applications, since the geometry can be described in the
most convenient and accurate manner among various options.

In most applications the higher-order method also gives more rapid
convergence of the results, compared to the low-order method, so that it is
simpler to achieve a high degree of accuracy. As illustrated in the compu-
tation of the spar with strakes, significantly more accurate results can be
obtained from the higher-order method and it requires less computational
time to achieve comparable accuracy of the solution. The application to
the FPSO shows that the second-order forces on practical structures can be
evaluated with substantial accuracy as well.

The accelerated pFFT method is restricted at present to use with the
low-order method. Nevertheless it can be very advantageous for the analy-
sis of very large structures such as those proposed for floating airports and
mobile offshore bases. It is shown that the iteration can be carried out
substantially faster by the pFFT method in comparison with conventional
matrix-vector multiplication. The method also requires an order of magni-
tude less memory, which is linearly proportional to the number of unknowns.
It is observed however the iteration converges slowly as the number of un-
knowns increases. It is desirable to improve the rate of convergence, for
example, by developing appropriate preconditioners.

The impulse-response functions in the time domain are evaluated by
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Fourier transformation of the frequency-domain results. It is noted that
the zero- and infinite-frequency limits must be considered when they are
nontrivial. Since a wide frequency range is required in the transform, it is
important to remove the effect of the irregular frequencies which occur in
the relatively high frequency range.

The computational time may be reduced significantly by exploiting
the geometric symmetry of structures, when this exists. For structures like
TLPs which have two planes of symmetry the computational domain may be
reduced to one quadrant by decomposing the solution into four components,
each symmetric or antisymmetric with respect to the planes of symmetry.
Thus the number of independent solutions is increased by a factor of 4 but
the number of unknowns is reduced by 1/4. The computational time for the
procedures requiring O(N2) and O(N3) operations can be reduced by 1/4
and 1/16, respectively, compared to a solution which does not exploit sym-
metry. For structures such as ship hulls which have one plane of symmetry
the corresponding reduction factors are 1/2 and 1/4. The spar shown in Fig-
ure 1 has no planes of symmetry, due to the helical strakes, and the analysis
of this structure must be carried out in the full three-dimensional domain.
There is no computational saving associated with planes of symmetry for
the pFFT method since that procedure only requires O(N) operations.

Panel methods are now indispensable tools for the prediction of wave
effects on large offshore structures. These methods have become more pow-
erful and versatile due to the various developments reviewed in this chapter.
The linear and second-order nonlinear analysis for three-dimensional struc-
tures and the interactions among them are performed routinely. As illus-
trated in the computational examples, the analysis can be made accurately
and efficiently on current personal computers.
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