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Abstract

Significant hydrodynamic interactions occur when bodies are located in close
proximity on the ocean surface. This situation exists in many applications of
practical importance, which require rational engineering analyses. Solutions
based on panel methods and other direct numerical methods can be used
for configurations involving relatively small numbers of bodies. When the
number of bodies is very large, asymptotic approximations are required. This
paper reviews the extensive analytical and numerical accomplishments in this
field. New computations are included to illustrate first- and second-order
interaction effects. Special consideration is given to configurations where the
interactions are singular at certain frequencies.

1. Introduction

Many applications occur in the field of marine hydrodynamics where two or more
vessels are in sufficiently close proximity to experience significant interactions.
Catamarans and other multi-hull ships, offshore platforms supported by multiple
columns, floating bridges, and arrays of wave-power devices are all examples where
the proximity is a permanent feature of the design. In other cases, such as marine
operations involving multiple vessels and platforms or replenishment operations of
two ships, the proximity is temporary but nevertheless important. Hydrodynamic
interactions related to wave effects are particularly significant, due to the oscilla-
tory phase of the waves in relation to the spacing, and the large horizontal scale
of the wave influence.

Multiple bodies can be studied with the same experimental and theoretical
methods that are applied to wave effects on a single body. Typically, the analysis
of two or three interacting bodies is a straightforward extension, but the analysis of
very large configurations is fundamentally more difficult. On the experimental side,
the physical size of the model may exceed the practical limits of the wave basin,
and the sensitivity of the response to the wave period and direction may dictate
an extensive series of tests. Thus there is a great need for reliable theories and
associated computational tools suitable for analyzing these problems. Moreover,
the variety of interesting interactions that occur for multiple bodies provides a rich
source of stimulus for fundamental research.
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In most cases of practical importance, the effects of ocean waves on floating
and submerged bodies can be analyzed by the linear potential theory. This theory
is well established for fixed structures, and for vessels which have no substantial
forward velocity. Classical solutions exist for relatively simple body shapes such
as circular cylinders. In some cases it is necessary to account for second-order
effects, including mean drift forces and more complex time-varying nonlinearities.
The same fundamental theory can be extended to the analysis of wave effects
on multiple bodies. In some of the examples cited above the different bodies
are connected structurally, and in others they are dynamically independent. The
distinction between structurally connected or independent bodies is not important
from the hydrodynamic standpoint, except insofar as the total number of modes
of body motion is reduced if the connections are rigid.

Much recent attention has been devoted to ‘Very Large Floating Structures’
(VLFS) suitable for use as floating airports and ‘Mobile Offshore Bases’ (MOB).
On the order of 104 separate buoyancy elements are used in some of the proposed
designs for floating airports. Typical MOB designs involve joining several large
semi-submersibles with flexible connectors which permit rotational deflections be-
tween the vessels. Among the challenging technical issues for this type of structure
is the coupling and decoupling of the vessels in a seaway. A similar issue exists
for the pontoon-type of VLFS, an array of rectangular shallow barges which are
joined together in the water.

The complexity of multi-body solutions increase rapidly with the number of
elements. To meet this challenge there has been steady progress in the development
of numerical methods which extend the capabilities of direct-solution techniques,
including panel methods suitable for the analysis of arbitrary structures and special
multipole methods suitable for arrays of vertical cylinders and other axisymmetric
elements. To complement these direct solutions, and offer computationally feasible
alternatives for very large arrays, approximations have been developed which are
based in varying degrees on the hydrodynamic properties of infinite arrays.

A brief historical review of this subject is presented in Section 2, with special
attention given to the seminal works of Professor Makoto Ohkusu. The theoretical
formulation is outlined in Section 3, with emphasis on techniques for represent-
ing the various radiation modes in a computationally efficient and general form.
Section 4 describes two examples of drift forces on multiple bodies, one the slow
oscillations of two independent bodies and the other the drift force on individ-
ual elements of a large array. Periodic arrays of bodies which extend to infinity,
and the analogous problems of bodies in channels, are considered in Section 5.
Closely related work on finite arrays is described in Section 6, with emphasis on the
phenomenon of near-trapping. In Section 7 the extension to second-order second-
harmonic effects is reviewed, with a comparison made between different models for
a tension-leg platform (TLP). Section 8 describes recent work on doubly-infinite
periodic arrays, and their relation to large rectangular finite arrays such as the
column-supported VLFS. Conclusions are summarized in Section 9.
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2. History

One of the first papers on this topic was published in 1969 by Ohkusu [44]. He
extended the classical solution for a single heaving circular cylinder, first devel-
oped by Ursell [55], to the case of two cylinders in a catamaran configuration. This
type of two-dimensional analysis is most relevant to the interactions between ad-
jacent ship hulls in beam seas. Such interactions are particularly strong, indeed
nearly singular, when the spacing between the hulls is an integer multiple of half
a wavelength. More extensive computations and experiments were published in
a subsequent paper [45] and a subset of these results is included in a more recent
survey [50].

Motivated by practical designs for offshore platforms with multiple columns,
Ohkusu [46] also developed a three-dimensional technique using the eigenfunction
expansions for single axisymmetric cylinders to account for their mutual wave
interactions. His first paper presented at an international symposium [47] summa-
rized and extended both of these pioneering contributions, and brought his work
to the attention of the international community. Coincidentally, the Proceedings
of that symposium include on adjoining pages one of the first papers devoted to
the direct numerical solution of wave effects on three-dimensional floating bodies,
by Faltinsen and Michelsen [15]. That panel method was extended subsequently
to analyze two independent bodies by van Oortmerssen [52, 53] and Løken [31],
but the computational resources of that time restricted their work to simple body
shapes represented by rather large panels.

Second-order slowly-varying drift forces are particularly important for vessels in
close proximity. Over many cycles of the first-order oscillatory motions, the drift
forces may cause substantial changes in the relative positions, possibly leading to
collisions. Ohkusu [48] demonstrated the importance of hydrodynamic interactions
on the drift force. His presentation of that paper included a memorable cinematic
record of experiments, showing the behavior in beam seas of a small vessel on the
weather side of a larger fixed structure. The sign of the drift force was shown to
change depending on the spacing relative to the wavelength. As a result, the drift
motion of the smaller vessel oscillated slowly in time. Another illustration of the
same phenomenon is presented in Section 4.

Over the years, as computational power has increased and software has been
refined, the panel method has been applied to more complex arrays and multi-body
configurations. Lee & Newman [26] show results for a proposed MOB consisting
of five large semi-subs joined by hinges, with ten columns on each semi-sub. A
more extensive hydroelastic analysis of a similar MOB configuration is reported by
Kim et al [23]. Maniar and Newman [33] present results for the diffraction past an
array of 100 vertical cylinders, with emphasis on the phenomenon of near-trapping
which is described in Section 6. Accelerated methods, such as those based on
the pre-corrected FFT algorithm [24, 40, 42], can extend the computational limits
substantially.
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The multiple-scattering method is an alternative approach which is particularly
efficient for arrays of axisymmetric bodies. It is based on (1) expanding the poten-
tial due to each body in cylindrical harmonics, (2) using Graf’s addition theorem
to transform to the local coordinates of the other cylinders, and (3) solving the gen-
eralized scattering problems for each of the other cylinders in the presence of the
first. This method, which was introduced to water-wave problems by Ohkusu [47],
has been developed and extended by Kagemoto & Yue [17], Linton & Evans [28],
Mavrakos [34], and in other works cited by these authors. Accelerated methods
also can be used here, as demonstrated by Murai et al [39], Kashiwagi [20], and
Utsunomiya et al [58]. Murai et al [39] analyze VLFS structures of the column-
supported and pontoon types, as well as hybrid combinations of the two types.
For the pontoon type they compute the relative motions between one sub-element
barge and the remaining very large structure, with application to the operation of
joining the sub-elements in the ocean.

Williams & Li [59] use the multiple-scattering method to analyze arrays of cylin-
ders with porous walls. Chakrabarti [3, 4] has used the multiple-scattering method
to represent the interactions between different bodies, in combination with local
solutions at each body based on the panel method.

Budal [1] and Falnes [14] have analyzed arrays of small wave-power absorbers,
motivated by the economy of building large numbers of small devices, and also
by the favorable outputs that could be achieved with optimum spacing of the
elements in the array relative to the wavelength. Simplified theories based on
long-wavelength and large-spacing approximations were used initially. A summary
and comparison of different approximations is given by Mavrakos & McIver [35],
together with accurate results based on the multiple-scattering method. McIver &
McIver [38] analyze a line of submerged Bristol cylinders with intermediate gaps.

In cases where a very large number of identical buoyancy elements are arranged
in a periodic array, it is logical to develop approximations based on the limiting case
where the array extends to infinity. Kagemoto et al [18] describe approximations
for analyzing wave diffraction by long rectangular pontoon-type bodies, and also
by large arrays of small columns. Ohkusu and Namba [51] have developed local
approximations valid near the edges of a rectangular mat-type structure. A similar
approach may be required to analyze the edges of a large periodic array. This topic
is discussed more extensively in §8.

3. Theoretical formulation

Following the usual conventions, a Cartesian coordinate system x = (x, y, z) is
used, with z = 0 the equilibrium plane of the free surface and z positive upwards.
Except where otherwise noted we shall simplify the discussion by assuming that the
fluid depth is infinite, and that plane incident waves propagate in the +x-direction
with radian frequency ω and wavenumber K = ω2/g.

The fluid velocity is defined as the gradient of the velocity potential, which
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is expressed in the time-harmonic form as the real part of the complex product
φ(x) eiωt. The potential φ is governed by Laplace’s equation in the fluid domain.
The linearized free-surface condition Kφ− ∂φ/∂z = 0 is applied on z = 0.

One or more bodies are present in the fluid, either floating on the free surface or
submerged. Each body is identified by an index k, where k = 1, 2, ..., N and N is
the total number of bodies. The submerged surface of each body is denoted by Sk

and the global body surface S is defined by the union of all body surfaces. Except
in the special case of porous bodies, the normal components of the body and fluid
velocity vectors are equal on S. The fluid motion vanishes at large depths, and in
the far field the radiated waves due to the presence of the bodies must be outgoing.

It is convenient to decompose the potential in the alternative forms

φ = φD + φR = φI + φS + φR . (1)

Here φD = φI + φS is the solution of the diffraction problem where ∂φD/∂n = 0
on S, φI is the potential of the incident-wave system, and φS is the scattered field
due to the presence of the bodies. The radiation potential φR represents the fluid
disturbance due to the motions of the bodies.

In the simplest case of a single rigid body with six degrees of freedom, it is
logical to express the radiation potential in the form

φR = iω
6∑

j=1

ξjφj , (2)

where ξj is the complex amplitude of the body motion in each degree of free-
dom (surge, sway, heave, roll, pitch, yaw). The boundary condition on S is then
expressed in the form

∂φj/∂n = nj , (3)

where
(n1, n2, n3) = n, (n4, n5, n6) = x × n. (4)

The hydrodynamic pressure force (and moment) acting on the body are repre-
sented by the exciting-force coefficients

Xi = − iωρ
∫∫

S

φDnidS, (5)

and by the added-mass and damping coefficients

Aij − ( i/ω)Bij = ρ

∫∫
S

φjnidS. (6)

One way to extend this notation if N > 1 bodies are present is to use an
additional index to identify each body. Thus the exciting force X

(k)
i acting on

body k is the contribution to the global integral (5) from the surface Sk, and the
radiation potentials due to body k are defined similarly in the form φ

(k)
j . With
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Fig. 1 Physical (left) and generalized (right) modes used to represent the vertical
and rotational motions of two bodies, e.g. a catamaran with independent
heave and roll motions of each hull. The physical modes are defined sep-
arately for each body, with the other body fixed. The generalized modes
are defined to be symmetric (j odd) or antisymmetric (j even) about the
midpoint between the two hulls.

this notation the added-mass and damping coefficients require double-superscripts
to distinguish the effects of each body’s motions on the others [25]. This facilitates
the interpretation of each body’s role, and it is most logical in when each body is
physically separate from the others.

An alternative and more compact notation follows if the original indices (i, j)
are extended to include all of the relevant separate effects of each body. For
two bodies, each having six conventional rigid-body modes, the extended indices
j = 7, 8, ..., 12 are used to define the six modes and force components of the second
body. This simplifies the changes required both in the theoretical formulation and
in programming. This notation is more logical if the separate bodies are viewed
as elements of a single global body with the submerged surface S, and the various
modes j represent the appropriate modes of normal velocity on this surface. This
notation is also useful in its extension to represent generalized modes, as described
below.

Generalized modes, also known as generalized coordinates, can be used in vari-
ous ways [41] to represent the different rigid-body modes of multiple bodies, struc-
tural deflections of bodies, and even the motions of interior free surfaces such as
moonpools and oscillating water columns. One or more of these physically different
extensions can be analyzed simultaneously with a logical framework. For exam-
ple, Lee & Newman [26] combine hinge deflection modes and bending modes in a
single set of generalized-mode shapes suitable for the hydroelastic analysis of five
semi-submersibles connected by hinges. If a set of generalized modes j = 1, 2, ..., J
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Fig. 2 Generalized modes used to represent the motions of N identical bodies con-
nected by N −1 simple hinges. These mode shapes are defined to be either
symmetric or antisymmetric about x = 0. The first two modes correspond
to global heave and pitch without hinge deflections. The remaining modes
represent the hinge deflections with zero displacement at the ends.

are defined by a corresponding set of generalized normal-velocity components nj ,
no changes are required to extend the definitions of the hydrodynamic force coef-
ficients (5-6). Fundamental properties including symmetry of the added-mass and
damping coefficients, and the Haskind relations for the exciting forces, also are
unchanged.

It is straightforward to express the conventional rigid-body modes of motion in
terms of a different set of generalized modes, or vice versa. The use of generalized
modes has two computational advantages. Firstly, if the global body surface S is
symmetric about one or more planes of symmetry, the symmetric/antisymmetric
components of the radiation potentials can be defined separately in terms of corre-
sponding generalized modes. A simple example with two identical bodies is illus-
trated in Figure 1. Secondly, if the bodies are connected by structural constraints
such as hinges, the number of modes can be reduced and the constraints imposed
without special programming changes. Appropriate modes for representing up to
four hinged bodies are shown in Figure 2.

4. Drift forces on multiple bodies

As noted in §2, the second-order slowly-varying drift forces are particularly im-
portant for vessels in close proximity. In most cases the mean drift force acting on
a floating body is in the downwave direction. Thus floating objects, like the wa-
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ter particles themselves, drift slowly in the same direction as the incident waves.
It is easy to verify this statement for a single body, floating freely on an un-
bounded free surface. Ohkusu [48] demonstrated a remarkable exception when he
analyzed a small ship lying in beam seas near the weather side of a large fixed
vessel. The physical explanation for this phenomenon was clear from the cinematic
observations of experiments: resonant standing waves occur at critical values of
the separation distance between the two vessels, and the resulting radiation stress
effectively pushes the two vessels apart.

This phenomenon is obvious in two dimensions, and it can be expected to play
an important role in the interactions of ship-like vessels in beam seas, but the ex-
istence of a negative drift force is less obvious for three-dimensional configurations
which are not elongated parallel to the wave crests. To study this further we con-
sider the same example used by Danmeier [7, 8], where a freely floating hemisphere
is upwave of a circular cylinder with vertical axis. The hemisphere and cylinder
have the same radius a and the cylinder draft is 2a. Figure 3 shows how the drift
force on the hemisphere depends on the spacing for four different wavenumbers.
In long waves, corresponding to the wavelength ratio λ/a = 10, the drift force
is relatively small but oscillatory with amplitude much greater than the limiting
value when the two bodies are far apart. Since the oscillations diminish slowly
with increasing separation distance, there are many intervals of the spacing where
the drift force is negative. In shorter waves, e.g. λ/a = 5 where the maximum
drift force occurs, the sign is always positive. For the intermediate case shown in
Figure 3, λ/a = 6.67, both the oscillatory and limiting values are substantial, but
only two negative regimes exist.

If the wavelength is not too short, it follows from a quasi-steady analysis that the
drift motion of the hemisphere will oscillate slowly in time, moving back and forth
between zones of positive and negative drift force in precisely the same manner
as in the experiments of Ohkusu [48]. This has been confirmed by Danmeier [7, 8],
using a time-domain analysis, but the computational cost of that method limited
the duration to slightly less than one oscillatory drift cycle.

For a single body the mean drift force can be evaluated directly, from integration
of the second-order pressure on the body surface, or alternatively from momentum
conservation. The direct approach is generally more difficult since it requires a
higher degree of numerical precision. The difficulties are especially significant for
bodies with sharp corners such as truncated cylinders. For multiple bodies it is
generally not possible to evaluate the drift force separately for each body from
the momentum analysis in the far field. A local momentum analysis has been
developed by Ferreira & Lee [16] to overcome this problem, but this approach
requires the computation of the fluid velocity and pressure at a large number of
control points in the near field.

An interesting example of recent numerical progress in this field is presented
by Kashiwagi [22], who computes the local drift force on various elements of an
array of 64 truncated circular cylinders. The array includes four rows with 16
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Fig. 3 Mean drift force acting on a freely floating hemisphere upwave of a fixed
vertical cylinder, plotted vs. the separation distance s. The two bodies have
the same radius a, the cylinder draft is 2a, and s is the distance between
their centers. The drift force is normalized by the product ρgaA2 where ρ
is the fluid density, g is gravity, and A is the incident-wave amplitude. The
normalized wavenumber Ka and wavelength λ/a are shown on the right.
The dashed lines show the values of the drift force on the hemisphere alone,
or in the limit s/a → ∞.

elements in each row. For cylinders at the upwave end, the drift force oscillates
rapidly as a function of the wavenumber below the critical wavenumber where
near-trapping occurs (as explained below). Above this wavenumber the upwave
elements experience a drift force similar to a single isolated cylinder, but with
larger magnitude. Elements in the middle of the array experience a mean drift force
which oscillates less rapidly below the critical wavenumber, with a sharp peak at
the critical wavenumber, followed by small magnitude above this critical point due
to sheltering. The elements near the downwave end of the array experience drift
forces which are smaller, or vary more slowly, except near the critical wavenumber
where oscillatory features occur. These computations are substantially confirmed
by parallel experimental measurements.
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5. Bodies in channels and infinite periodic arrays

A direct analogy exists between two different problems, (A) a single body in a
channel with parallel vertical walls, and (B) a periodic array consisting of the same
body and an infinite set of images reflected about the walls. Both problems have
practical applications, including the estimation of wall reflection in experiments
carried out in narrow wave tanks, and the use of large periodic arrays for the
support of piers or bridges and very large floating structures (VLFS). Only (B)
can be considered strictly as involving multiple bodies, but the analogy justifies
considering the two problems together here.

Ohkusu [49] analyzed the reflection and transmission of waves by a periodic
array of vertical circular cylinders, using the eigenfunction expansion for a single
cylinder and summing the infinite series for each image. Comparison was made
with experimental results for a cylinder in a channel, and also for two cylinders
situated with their axes on the channel centerline. The strong dependence on the
wavenumber was generally confirmed, with good agreement between the theory
and experiments. Singular results were found at the frequency corresponding to
the first symmetric transverse standing wave in the channel. No singular results
are evident at the lower frequency where an antisymmetric trapped mode might
be observed, perhaps because the forcing incident wave system is symmetric.

The existence of trapped modes was established for this class of problems by
Callan et al [2]. For the case of a single vertical cylinder of radius a on the
centerplane y = 0 of a channel with vertical walls at y = ±d, they showed that a
nontrivial motion of the fluid and free surface exists with no forcing from incident
waves or motions of the cylinder. This solution exists at a particular wavenumber
K in the range 1.32 < Kd < π/2, with the precise value dependent on a/d.
Following earlier work on trapped modes along the axis of horizontal cylinders [56],
this type of motion is referred to as a ‘trapped mode’ since it is confined to the
domain near the (vertical) cylinder and no energy radiation occurs in the far
field. The trapped mode discovered by Callan et al [2] is antisymmetric about
y = 0. Physically it resembles a localized ‘sloshing mode’ in the channel. However
it differs, both in wavenumber and in localization, from the simple transverse
standing wave that exists at Kd = π/2 in an unobstructed channel.

Other cases of trapping by one or more bodies in a channel have been discovered
subsequently by Evans et al [9], Evans & Porter [10], McIver et al [37], Utsunomiya
& Eatock Taylor [57], and Linton & McIver [30]. Closely related works which are
relevant to finite arrays are discussed in the following section.

In the references discussed above the bodies are cylindrical throughout the ver-
tical water column, and fixed. In these circumstances the boundary-value prob-
lem for the velocity potential can be reduced to a solution of the modified wave
equation in the horizontal plane, and direct analogies exist with two-dimensional
acoustic problems. The full three-dimensional problem must be considered if the
body geometry changes with depth, or if radiation problems are considered. Two
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approaches have been used in such cases: (1) superposing a large finite number
of images and summing their effects, or (2) using special multipoles or Green
functions which satisfy the boundary conditions on the channel walls.

The method based on superposing a finite number of images has the advantage
that it can be used with computer codes intended for use with a single compact
body, simply by extending the definition of the body to include the images. This
method has been criticized, on the basis of slow convergence of the corresponding
series for the Green function and incorrect far-field asymptotics, but the conver-
gence of computed local quantities such as the hydrodynamic force coefficients is
usually faster. Newman [41] gives illustrative results for the hydrodynamic force
coefficients showing the convergence with increasing numbers of images.

The method based on special multipoles which satisfy the boundary condi-
tions on the channel walls has been applied to infinite arrays of truncated circular
cylinders by Yeung & Sphaier [60] and Linton & Evans [29]. Linton & Evans de-
vote special efforts to the derivation of integral representations for the multipoles
which satisfy exactly the conditions on the channel walls and in the far field. They
show the existence of trapped modes for cylinders which are either submerged, ex-
tending from the bottom part-way up to the free surface, or surface-piercing and
extending part-way down to the bottom. Linton [27] has derived a more efficient
representation for the Green function in a channel of finite depth.

6. Finite arrays and near-trapping

In work that was intended to test the limits of a higher-order panel method,
Maniar & Newman [33] analyzed long arrays with up to 100 vertical cylinders.
They discovered that, as the number of cylinders is increased, the local solution
in the interior of the array increases without apparent limit in narrow bands of
wavenumbers. The locations of these bands are slightly below the values Kd =
nπ/2, where 2d is the spacing between the axes of adjacent cylinders and n =
1, 2, 3, ... . The odd modes (n = 1, 3, 5, ...) have a phase difference of 180◦ at
adjacent elements and zero normal velocity (∂φ/∂y = 0) on the vertical planes
y = ±d,±3d, ..., corresponding to the channel walls and their images (in the
analagous case of a cylinder on the center of a channel). Conversely, the even
modes (n = 2, 4, 6, ...) are in phase at adjacent elements and φ = 0 on the vertical
planes y = ±d,±3d, .... In view of these boundary conditions, the odd/even modes
are called Neumann or Dirichlet modes, respectively.

For the first Neumann and Dirichlet modes, Maniar & Newman [33] showed that
very large local exciting forces act on the cylinders near the middle of the array (up
to 35 times the force on a single cylinder, in the case N = 100). The connection
with trapped modes was suggested by the coincidence of the first wavenumber
(n = 1) with the trapped-mode wavenumber reported by Callan et al (1991).
Since the array is finite, the analogy with trapped modes on infinite arrays (or
bodies in channels) is approximate, but with increasing correspondence as the
length of the array increases toward infinity. When a distinction is appropriate,
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for finite arrays, these modes are referred to as ‘near-trapped’ modes. (The latter
term is also used to describe the higher modes n > 2 which are above the cut-off
wavenumber in a channel, and hence radiate some energy to the far field.)

Similar results have been found by Evans & Porter [11, 12] for a circular array
of N cylinders. The case N = 4 is particularly important for offshore platforms,
although the column radius of practical structures is usually smaller (relative to
the spacing) than in the configurations where strong near-trapping effects exist.
Other configurations where near-trapping has been demonstrated include rectan-
gular arrays, where the number of these modes is generally increased [12, 20, 43].
Kashiwagi [22] has computed the local drift force on array elements, as discussed
in §4. The anti-symmetric trapped mode cannot cause a mean drift force by itself,
but the occurrence of singular peaks in [22] may be explained by the quadratic
interaction between the trapped mode and the antisymmetric component of the
regular solution.

The understanding of near-trapping on long finite arrays has been brought into
a clearer focus by Evans & Porter [12], who show that it is closely related to
amplitude-modulated Rayleigh-Bloch waves along an infinite array. An illuminat-
ing mechanical analogy is described by Utsunomiya & Eatock Taylor [57].

The practical implications of near-trapping have been questioned on various
grounds, including nonlinear effects which obviously limit the magnitude of the
trapped modes. Special experiments have demonstrated the existence of trapped
modes in a wave tank (D. V. Evans, private communication). Moreover it is well
known for TLP’s that the maximum surge exciting force occurs at a slightly smaller
wavenumber than the value Kd = π where the phase of the incident wave is the
same at both pairs of columns, suggesting that this maximum is associated with
the second near-trapped mode. For large arrays it may be difficult to verify results
such as those shown in Figures 5-7, due to the narrow bandwidth of the peaks and
the slow rise time of such effects in an experiment of finite duration. Nevertheless

Fig. 4 Perspective view of the array N = 8 with unequal spacing between adjacent
elements.
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Fig. 5 Horizontal exciting force on the middle element of an equally-spaced array
with N = 1, 3, 5, 9 elements.

it seems prudent to consider this phenomenon carefully in the practical design of
structures supported by multiple columns.

Illustrative results will be shown here for arrays of N elements which are non-
cylindrical, as shown in Figure 4. Each element is defined by a circular cylinder
with vertical axis and radius Rc, extending from the free surface down to the depth
z = −D where a sphere of larger radius Rs is joined to the cylinder. For the results
shown here D = Rs = 2Rc.

Figures 5-6 show the horizontal exciting force acting on one element of the array,
normalized by the density, gravity, wave elevation, and R2

c . The wavenumber K

is normalized by Rc. The incident-wave direction is parallel to the array.
In Figure 5 results are compared for the force on the middle element in an

array with N = 1, 3, 5, 9 equally-spaced elements. The spacing between the axes
of adjacent elements is equal to 2πRc. ForN > 1 the force tends toward a sequence
of sharp peaks when K times the spacing is slightly less than π times an integer.
As N increases the peak values increase.

Figure 6 shows the force on the fourth element of the array with N = 8 elements
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Fig. 6 Horizontal exciting force on the 4th element of the array shown in Figure 4.
In the case represented by the solid line (s = 1) the spacing is uniform. In
the other cases the spacing between alternate pairs of elements is increased
by the factor s.

spaced unequally, as shown in Figure 4. The spacing 2πRc is used between the
element pairs (1,2), (3,4), (5,6), and (7,8), but this is increased by the factor s

between the elements (2,3), (4,5), and (6,7). Computations are shown for s =
(1, 4/3, 2). In the first case (s = 1) the spacing is uniform. Some reduction in the
peak forces is apparent in the other cases, especially for the first Dirichlet mode
just below KRc = 1, but elsewhere the reduction is modest. Increased secondary
peaks are apparent in the intermediate regime 1/2 < KRc < 1, which may be
attributed to the fact that the array shown in Figure 4 is periodic with respect to
four pairs of elements. Thus it is not clear that adopting a nonuniform spacing
for long arrays of elements is a useful scheme to reduce the loads associated with
nearly-trapped modes. On the other hand Evans & Porter [11] show a substantial
reduction for a circular array with four elements when the radius of one element is
increased slightly. This apparent contradiction may be due to the fact that their
symmetric array is more highly-tuned, compared to the straight array with eight
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Fig. 7 Total horizontal exciting force on the complete array shown in Figure 4.
Other definitions are the same as in Figure 6.

elements.
Figure 7 shows the total horizontal exciting force acting on the same array. The

Neumann modes have a relatively weak influence here, due to the phase difference
between adjacent elements of the array. Conversely, the Dirichlet modes, which
are nearly in phase at adjacent elements, combine to give a very large exciting
force just below Kd = π.

7. Second-order analysis of arrays

Malenica et al [32] have extended the interaction method of Linton & Evans to
second order in the perturbation expansion. This is motivated by the importance
of second-order wave loads and runup on multi-column structures such as TLP’s,
and also by the need for accurate solutions of the second-order potential as a
basis for the analysis of third-order loads. Computations are presented for arrays
of two, three, and four cylinders, equally spaced around a circle. Comparisons
of various hydrodynamic parameters with the corresponding results for a single
cylinder demonstrate the importance of accounting for the hydrodynamic interac-
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Fig. 8 Perspective view of the TLP geometry used for the comparison of the
second-order free-surface elevations shown in Figure 9. The four columns
have radius a and draft 3a, with spacing 4a between the axes of adjacent
columns. The pontoons have square sections of width a.

tions, especially in the vicinity of wavenumbers where near-trapping occurs. The
second-order pressure, which is known to decay slowly with depth, is particularly
strong on the upwave cylinders due to the greater partial-standing-wave effect as-
sociated with reflection from the downwave cylinders. Near-trapping is shown to
play a strong role, not only for the first-order solution but also for the second-
order solution when the second-harmonic of the wave frequency coincides with the
frequency of a trapped mode.

To illustrate the role of near-trapping, Malenica et al [32] present results for
the first- and second-order free-surface elevations at wavenumbers where the near-
trapped modes are excited directly by the first-order incident wave, and indirectly
by forcing at the second-harmonic frequency. These results are for an array of four
cylinders of radius a, centered at the corners of a square with sides 4a and extend-
ing to the bottom in a fluid of depth 3a. For that configuration and water depth
the first-order trapped mode occurs at ka = 1.66 and the second-harmonic forc-
ing of the same wavenumber occurs when ka = 0.468, where k is the finite-depth
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Fig. 9 Comparisons of the normalized second-order wave elevation |η2|/kA2 along
the diagonal line x = y connecting the centers of opposite columns of the
TLP shown in Figure 8. Here η2 is the second-order component of the
elevation, k is the wavenumber of the first-order solution, and A is the
incident-wave amplitude. The incident-wave direction is parallel to the
same diagonal. The positions of the columns are outlined by the vertical
dashed lines. The second-order wavenumber corresponds to the first near-
trapped mode. The three geometrical configurations are: (– – – –) four
bottom-mounted cylinders considered by Malenica et al [32], (–———)
the complete TLP with pontoons shown in Figure 8, and (— - —) four
truncated cylinders with the same draft as the TLP.

wavenumber. In the later case the second-order runup is very large, especially on
the downwave cylinder, as shown by the dashed line in Figure 9.

Similar results can be expected for a TLP, but a quantitative comparison is
required to verify the use of the simpler bottom-mounted cylinders considered by
Malenica et al [32]. For this purpose computations have been made for the TLP
shown in Figure 8, and for an array of four truncated cylinders without the pon-
toons, both in infinite water depth. In all three configurations the radius, spacing,
and depth of the cylinders or columns is the same. Comparison of the first-order
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runup (not shown here) confirms that the results for all three configurations are
practically identical, at the wavenumber Ka = 1.66 where near-trapping occurs.
This is not surprising, since the pontoons and column bottoms are deeper than
the effective depth of the first-order velocity field. However at the wavenumber
Ka = 0.468, where the frequency of the second-harmonic forcing coincides with a
near-trapped mode, the effects of the pontoons and of the truncated columns are
more important in the first-order solution. As a result there are significant differ-
ences between the three configurations, as shown in Figure 9. The computations
for the bottom-mounted array are practically identical to the results shown by
Malenica et al [32], with a maximum normalized second-order runup approaching
18. For four truncated cylinders with the same draft, in infinite fluid depth, the
maximum second-order runup is reduced by about one-third. (Since the depth is
changed, the first-order wavenumber is slightly different.) When the pontoons of
the complete TLP are added, the results are intermediate between the two sim-
pler cases. The use of four bottom-mounted cylinders exaggerates the maximum
second-order runup on the TLP by about 22%.

8. Doubly periodic arrays

Column-supported VLFS structures are usually configured with rectangular ar-
rays of elements which are periodic in two dimensions, say with Mx rows and My

columns in the x, y directions, respectively. If Mx and My are both large, it is
logical to seek a simplified solution for the fluid domain within the array, possibly
coupled to the exterior via a local solution near the edges. This type of simplifica-
tion was suggested by Kagemoto et al [19], and several different approaches have
been explored subsequently.

Evans & Shipway [13] adopt a technique based on homogenization theory, where
the region occupied by a rectangular array of cylinders is replaced by a homoge-
neous continuum. In this region the conservation equations are modified to account
for the presence of the cylinders, with the implicit assumption that the cylinder
radius is small compared to the spacing and wavelength. A matching procedure
is used to connect this domain to the fluid regions outside the array. Clément &
Pianet [6] show that similar results can be obtained by numerical measurements of
the index of wave refraction through a triangular ‘prism’ consisting of up to 120
elements. Porter & Evans [54] compare the trapped mode wavenumbers obtained
from the homogenization approximation with exact numerical results for a finite
array.

If Mx � 1 and My � 1, it is natural to consider the limiting case of a peri-
odic array which extends to ±∞ in both horizontal directions, covering the entire
domain of the free surface. In this limit the conventional assumptions of wave
scattering by compact bodies must be re-examined, and indeed such a problem
may seem at first glance to be non-physical.

Chou [5] has studied this type of problem with the scattering due to periodic
boundary conditions on the free surface or bottom. The principal result is that
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waves can propagate through such an array without a change of amplitude, if the
wave frequency is within certain ‘passing bands’. Conversely, if the frequency is
within a ‘stopping band’, such propagation is not possible.

McIver [36] considers more specific problems where the scattering elements are
circular cylinders, and determines the boundaries between the passing and stop-
ping bands for specific configurations. Comparison is made with computations of
the transmission coefficient for an array which is large but finite in one direction,
analogous to the channel problem with a large number of cylinders on the center-
plane. The transmission is effectively zero for wavenumbers near KL = π, where
the spacing L between adjacent rows in the direction of propagation is close to
half of the wavelength. The transmission is nearly complete for other values of
KL ≤ 2π, except for a narrow band near 2π.

9. Conclusions

The analysis of wave interactions with multiple bodies is an important and active
field of marine hydrodynamics. Many of the developments in this field follow as
logical extensions from the seminal works of Ohkusu [44-49]. Subsequent work has
been motivated by the increasing complexity of multiple-body configurations, and
by the expanding range of applications. Significant extensions, generalizations,
and improvements have been made in the computational methods for direct solu-
tions, and in the parallel development of analytic methods for very large arrays.
Fascinating scientific issues have emerged, including the roles of trapped modes
and Rayleigh-Bloch waves, and their singular effects on various types of arrays.

Direct solutions of the linear wave radiation and diffraction problems are now
practical, using the panel method with O(10) complex bodies or O(100) simple
bodies. For axisymmetric bodies the multiple-scattering method provides an al-
ternative approach with greater computational efficiency. The same methods have
been extended to include second-order wave effects, where the computational costs
limit the number of bodies to somewhat smaller numbers.

Current work is especially active in two principal areas: (1) accelerated numer-
ical methods for analyzing larger numbers of bodies, including column-supported
VLFS structures, and (2) asymptotic theories for the same configurations which
are applicable when the number of elements is very large. It is obvious that these
two complementary directions for research will be mutually beneficial.

Several other important challenges can be identified. One is to establish the
appropriate physical role of near-trapping in practical applications. Others include
the analysis of nonlinear phenomena which are important for multiple interacting
bodies, such as ringing on arrays of columns, runup, and the estimation of the
air-gap clearance under connecting decks. Slowly-varying nonlinear motions are
important in marine operations involving vessels in close proximity. The tasks
of coupling and uncoupling very large floating structures at sea require special
consideration with respect to their relative motions, including both the first-order
oscillatory components and second-order slowly-varying effects.
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It is evident that this subject will continue to challenge scientists and engineers
for many years in the future.
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