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Abstract. Conservation of momentum is applied to finite fluid volume surround-
ing a body and enclosed by the control surface in order to obtain expressions for
all components of quadratic forces and moments acting on the body in terms of
the momentum flux and the change of the momentum in the fluid volume. It is
shown that the expressions derived are essentially identical with those obtained by
a complementary approach in [1] where the pressure integrals on the body surface are
tranformed into the integrals on the control surface using various vector theorems.
Computational results are presented limited to the mean drift forces to illustrate
the advantages of using control surfaces.
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1. Introduction

The second-order quadratic forces contribute to the excitation at low or
high frequencies than those of incident waves which may be important
for the analysis of structures with certain resonance features such as
moored vessels and Tension Leg Platforms. They are also important
for the analysis of drift motion of vessels which can be of particular
concern when the vessels operate in the proximity of other structures.
For certain structures such as ships and spars, it is of interest to have
accurate prediction of slowly varying roll and pitch loads.

The quadratic forces can be evaluated by the integration of fluid
pressure over the instantaneous wetted surface as shown in [2], [3], [4]
and [5]. As a special case, the horizontal mean drift force and vertical
moment can also be evaluated from the momentum conservation prin-
ciple applied to the entire volume of fluid as shown in [6] and [7]. Other
than this special case, the computational result of the quadratic pres-
sure forces is generally less accurate than that of the first order forces.
Thus it requires significantly more refined descritization entailing in-
creased computing time. This is because of the evaluation of the fluid
velocity, which contributes to the quadratic forces, is less accurate than
the pressure on the body surface. When the body has sharp corners, the
quadratic pressure near the corner is singular, though integrable, and it
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renders the computational result significantly inaccurate. Nonuniform
discretization near the corner in the low order method [8], or nonuni-
form mapping in the higher order method [9] do produce more accurate
results than otherwise. However the computational results can still be
inaccurate especially when the bodies experience large motion.

In order to overcome this difficulty, Ferreira and Lee [10] applied
momentum conservation over finite fluid volume surrounding the struc-
tures. All components of mean drift forces and moments on the body
are obtained from the momentum flux through the control surface en-
closing the fluid volume without the hydrodynamic pressure integration
over the body surface. The computational results are significantly more
accurate than the pressure integration. Recently Dai et al. [1] derived
expressions for the quadratic forces and moments by transforming the
pressure integration over the body surface into those on the control
surface. One obvious advantage of these expressions is that the fluid
velocity is not required on the body surface when body is fixed. Also
the quadratic of the fluid velocity, which is most singular when body
has sharp corners, in the pressure integration is not present in the new
expressions having only linear terms in the fluid velocity.

In the following, we consider the conservation of momentum in the
finite fluid volume surrounding a body and obtain the expressions for
all components of quadratic forces and moments including complete
mean drift forces and moments considered in [10]. It is shown that
these expressions are equivalent to those obtained by a complementary
approach in [1]. Computational results are presented for the mean drift
forces to illustrate the advantage of present expressions.

2. Formulation

A potential flow is assumed which is governed by the velocity potential
®(Z,t). The fluid pressure follows from Bernoulli’s equation in the form

1
p(,1) = —p(®y + 5V - VO + g2) (1)

where p is the fluid density and g is gravity. Z = (z,y, z) is the co-
ordinates in a space-fixed Cartesian coordinate system with positive
z pointing upward, perpendicular to the undisturbed free surface. ¢
denotes time.

The forces on the body are then obtained from

F

—p // [P, + %V<1> SV + g2]ds 2)
b
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and the moment from
- 1
M:—p// (% )[; + 5TD - T + g2]ds (3)
Sp

where 7 is unit normal vector pointing outward from the fluid domain
and s denotes instantaneous wetted body surface.

The control volume considered is surrounded by s; and by the con-
trol surface s.. If s; and s, intersect the free surface, we denote the
intersection as w and ¢, respectively. The free surface between w and ¢
is denoted by sy. It is assumed that s, and s. intersect the undisturbed
free surface perpendicularly. The rate of change of the linear momentum
P of the fluid in the control volume is

= 4
dt P // Vdv = p/Sbfc (@7 + V(U - 7)]ds (4)

and the rate of change of the angular momentum H is

Ly

_ p/ [y(F % 71) + (F x VO)(TF - 7)) ds (5)
Spfe

Here V is the fluid velocity and U is the velocity of the control surface.
0
Thus U - n—OonscandU n——onsb and sy.

Using an identity given in [11, p134]
®— (VO -VP)ii|ds = 6
//Sbf anv (v Vo)iilds = 0 (6)

and the equations (4) and (5), we have the force and moment in the
forms

. 1 i)
F = p// <I>t+§V<I>-V<I>)ﬁ—g—V<I>]ds

—I—p// <I>t—|—;V<I> V@nds—pg// znds—— (7)
and
- 1 L. 0D
M= p// (1 + 598 VO)(F x ) — = (& x VB)Jds

1
+ o [ (@+5V- VO x 7)ds

sf
—pg//Z(:E'xnd/s—a;/—I;fI (8)
Sp
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Considering quadratic terms from the foregoing equations as shown
in Appendix, we have the expressions for the quadratic forces and mo-
ments. We first consider the mean drift forces and moments. Since the
time averages of last terms in the equations (7) and (8) vanish, there
is no contribution from these terms to the mean forces and moments.
The force can be obtained from the time average of

Fo = Lp 52 [0k —pg [ (G- it))F
// Vool — Sii(Ve: Vo)lds
+ pk‘// <—+;v¢ Vo)ds + FY) ()

and the moment from

- p// Vo) 02 (& x 7)(Vo- Vo)ds

- 9
+ p//sf 7 % cﬂ+ 5V Vo)ds + MS  (10)

Here ¢ denotes the first order velocity potential and ¢ = —(1/g)¢; de-
notes the first order wave elevation. Sy, Sy and S are undisturbed body
surface, free surface and control surface. W and C' are the intersections
of Sy and S, with undisturbed free surface. 7’ denotes two dimensional
normal vector to W and C on Sy, V' two dimensional gradient on Sy
and k the unit vector in z. & = (E1,29,23) = E+ a X ¥ where gand
a denote the motion amplitudes of the translational and the rotational
modes, respectively. Finally F éz) and M éz) denote parts of hydrostatic
forces and moments and they are given in Appendix. We note above
equations are different from those in [10].

The expressions for the quadratic forces and moments are completed
by adding the quadratic terms of the changes of the linear momentum
of the fluid volume

dP<2

/ w— +(Vnlds

— [W(d—:-ﬁ)ﬂa-ﬁ)wtus (11)
Sy t

and the angular momentum

2)(¢
S p//wxv¢—¢+CV¢t]
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o [[[ VoS )+ Vel (12)

to the equations (9) and (10). Among several expressions, (11) and (12)
render the total forces and moments in the most compact forms. The
derivations of these equations are provided in the Appendix. The final
expressions for the quadratic forces and moments derived here are the
same as those given in [1].

3. Numerical Results and Discussions

We first consider a hemisphere which is freely floating in infinite water
depth. The incident wave travels to the positive x axis. Figure 1 shows
the hemisphere enclosed by the cylindrical control surface. The radius
of the sphere is 1 meter and the radius and draft of the control surface
are 1.2 meters. Computations are made using the higher-order option
of the panel program WAMIT. The geometry of the sphere and that
of the control surface are represented analytically. A quadrant of the
hemisphere is represented by a patch and a quadrant of the interior
free surface of the hemisphere is also represented by a patch. The latter
is introduced to eliminate the effect of the irregular frequencies. The
unknown velocity potential on each patch is represented by quadratic
B-splines. Each patch is subdivided into 1, 4 and 16 higher order panels
to examine the convergence of the computational results. On the con-
trol surface, a fixed number of control points in the calculation of the
momentum flux. The bottom, side and top of the cylindrical control
surface are represented by 12, 12 and 4 subdivisions, respectively. The
integration is carried out using 9 nodes Gauss quadrature on each
subdivision assuming quadratic variation of the momentum flux. Thus
252 control points are used in total. The mean surge drift forces on the
hemisphere are showed on the left column of Figure 3 which will be
discussed below.

Next we consider a freely floating truncated circular cylinder of ra-
dius and draft 1 meters in infinite water depth. The center of rotation
of the cylinder is at the intersection of the axis of the cylinder with
the free surface while the center of gravity is 1 meter below the free
surface. The radius of gyration of the pitch mode is 0.5 meters. Figure
2 shows the cylinder and the control surface. Three patches are used
to represented the cylinder including the interior free surface and 3, 12
and 48 higher-order panels are used in the computation. The geometry
of the cylinder is represented analytically with nonuniform mapping
near the corner. As in the previous computation, 252 control points
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are used, in total, on the same cylindrical control surface of the radius
and draft of 1.2 meters. The mean surge drift forces on the cylinder are
showed on the right column of Figure 3.

Figure 3 shows the surge mean drift forces on the hemisphere on
the left column and those on the cylinder on the right column. The
computational results are more accurate toward the bottom plots for
which finer discretization is used. Each plot contains three surge forces
computed by three approaches; the pressure integration on the body
surface [5], the far field momentum conservation [6] and the momentum
conservation within the control surface. The figure shows the results
from the pressure integration are least accurate. Specifically, while the
mean surge force on the cylinder, which has a sharp corner, can be
calculated accurately using 3 panels up to around KR = 3 by mo-
mentum conservation, it is necessary to use 48 panels for the pressure
integration. Since the computational time for the linear solution in
the higher-order method is typically proportional to the square of the
number of panels, the momentum conservation can be orders of mag-
nitude more efficient than the pressure integration for the evaluation
of the mean forces. The figure also shows the results using the control
surface are identical with those from the momentum conservation to the
graphical accuracy. The computational time using the control surface
depends on the number of control points. Using compact control sur-
faces surrounding the body, as shown in this example, the additional
computating time for the calculation of the momentum flux on the
control surface can be similar to that for the linear solution.

This example illustrates the advantages of using control surface for
the calculation of mean forces. The computational results are as accu-
rate as those from the far field momentum conservation. All components
of mean forces and moments can be calculated more efficiently than the
pressure integration. For multiple bodies, the forces and moments on
individual body can be obtained using separate control surface sur-
rounding each body which is not possible by the far field momentum
conservation.

4. Conclusion

We derived expressions for the quadratic forces and moments by apply-
ing momentum conservation in the finite volume surrounding the body.
The final form of the expressions can be made to be identical to those
obtained by Dai et al. [1]. Computations of mean drift forces show
the accuracy and efficiency of using the control surfaces. All compo-
nents of the forces and moments can be evaluated as with the pressure
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Figure 1. Geometry of the hemisphere and control surface. The radius of the sphere
is 1. The radius and draft of the cylindrical control surface are 1.2. The meshes are
for the purpose of the visualization only.
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Figure 2. Geometry of the cylinder and control surface. The radius and draft of the
cylinder are 1. The radius and draft of the cylindrical control surface are 1.2. The
meshes are for the purpose of the visualization only.
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Figure 3. Nondimensional mean surge forces on the hemisphere and cylinder. The
forces on the hemisphere is on the left column and those on the cylinder on the right
column. The forces are normalized by pgRA? where p is the water density, g is the
gravitational acceleration, R is the radius and A is the wave amplitude. K is the
infinite depth wave number. Forces by the pressure integration are represented by
dashed lines, those by the momentum conservation by solid lines and those by using
control surface are represented by squares.
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integration but by avoiding the integration of pressure on the body
the computational results are as accurate as the far field momentum
conservation.

The expressions for the quadratic forces and moments in bichromatic
waves contain the integration over the body surface of the pressure
proportional to the fluid velocity, as shown in the equations (11) and
(12). Thus further study is needed to find the computational advantage
of the current approach, in particular, when the body has sharp corners.
However, in comparison with the pressure integration, the pressure to
be integrated is less singular. In addition, when low frequency forces are
of interest, the contribution from the integration over the body surface
will be small, linearly proportional to the difference of two frequencies.

Appendix

The quadratic terms of the integral on s., denoted by Fjg,, are given in
the form

A = 2 [ tga—p [ [ 19052 5i(vo- Vods (13

where the first line integral accounts for the momentum flux over the
portion of s. for z = (0, ().
The quadratic terms of the integral on sy, denoted by Fg,, are

RO = — g [ G+ 2 [[ (96 v0pa

”// ¢tV¢tds+pk//< (14)

where the first line integral accounts for the vertical momentum flux
over the portion of free surface between the mean position of the water-
line W and the unsteady line of intersection of the body with the free
surface w. The third integral accounts for the horizontal momentum
flux due to the slope of the free surface elevation. This term was omitted
in the equation (13) of [10]. The last integral is due to the expansion
of the velocity potential from Sy to .

The quadratic terms due to the hydrostatic pressure on s; are ob-
tained by two integrals. One is over the mean wetted body surface Sy
and the result, following [5], takes a form

Féi) = —pg//s zfds
b

= a x (—pgAuwp(&3 + orys — a2$f)E) + Féz) (15)
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where A, is the waterplane area, x5 and y; are the coordinates of the
center of floatation and

2 1 -
Fé ) = —pgAuplaiossy + aoozys + 5(@% + a3) Z,)k (16)
Here Z, denotes the vertical coodinate of the origin of the body-fixed
coordinates system relative to the mean free surface.
The second integral is over the region between z = Z3 and z = ( on
sp and it takes the form

. ¢—E3 1
2 = —_ — 71— —, —
B =—pg [ [+ 20)idz = —5pg [ (¢ -Zht (1)
w 0 w
where the vertical coordinate of the body fixed coordinates system
Z=z— Eg.
Invoking Stoke’s theorem to a vector V', we have a relation

—,

//[(ﬁx V) x V]ds = /(Fx 7)dl = —/[V},ﬁ’ (V@R (18)

when the tangential vector ¢ in the line integral is perpendicular to k
Applying this relation over the region enclosed by the waterline, W
with V = (0,0, =3), we have

1 o . =
5P9 /W(n’zg)dl =& X (pgAuwp(&s + aryy — avxy)k) (19)

Similarly, applying this relation between W and C with V = (0,0, ¢2),
we have

%pg( /W ¢l + /C et = / /S O buds (20)

Excluding the change of momentum dP /dt, the quadratic forces can
be obtained as the sum of F éf), F éi), F éi) and ﬁéé) Upon substituting
the relations in the equations (19) and (20) to this sum, we have the
mean forces in the form shown in the equation (9). The expression for
the moments can be obtained in the similar manner and it is shown in
the equation (10). Here we provide the hydrostatic moments, M éz), for
the completeness.

M)

1
pI{[—Auwp(E3azz s + 5(04% +a3)Zoyys) — 20103 L12
1
+ aoas(Li1 — Lag) + V(aaoxy — 5(04% +a3) )]

— Auwp(&3+ a1y — aowy) (012, + 52)}5

jnn70-chlee.tex; 8/05/2008; 15:51; p.10



On the evaluation of quadratic forces on stationary bodies 11

1
+ pg{[—Auwp(§303y; — 5(04% + a%)Zo$f) + 2aa3L12
1
+ araz(Lin — La22) + V§(Oé§ +a3)ap)]
— Ayp(& + aryp — anzp)(aZy, — &)} (21)

where V denotes the volume of the body and x; and ¥, are the co-
ordinates of the center of buoyancy. L;; denotes the moments of the
waterplane area with the subscript ¢ and j corresponding to the x and
y coordinates.

We next consider the quadratic terms due to the change of mo-
mentum inside the control volume in the equations (4) and (5). The
quadratic term of the integral on s. vanishes except over the region
z = (0,(). Those on s, and sy can be expressed in terms of the integrals
over the mean surfaces, S, and Sy. Invoking Stoke’s theorem on Sy, and
using the vector relations given in [12, Chapter 6, equations (74d) and
(74e)], we have following two relations, one for the linear momentum

g/WC[(Esﬁ’—(i Rdl + ax //Sb riids
-/ (200 — (E- Tonlds (22)

g/WC:fx s — (B ARl + Ex//Sb ¢tﬁds+&><//5b(:fxﬁ)¢tds
= [ 1E-0@ Vo) — @xM)(E-Vou)ds (23)

Using above relations, it can be shown that the changes of momentum
in (4) and (5) take the forms

@)
Ll / V622 4 (Vs

+of /S b[wd—j ) + (2 A) Vi ]ds (24)

and

% p// 7 x (VOO 4 (Voilds

+ p//Sb:Ex [V¢(d—;-ﬁ)+(5-ﬁ)v¢t]ds (25)
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