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Trapped-wave modes of bodies in channels
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Trapped waves can exist in the presence of bodies in open water, and also in channels
of finite width. Various examples are found for bodies which support trapped waves
in channels, including floating and submerged bodies and bottom-mounted cylinders.
Different types of trapping are considered where the body is fixed or free to move in
response to the oscillatory pressure. In some cases both types are supported by the same
body. In most cases for fixed bodies the fluid motion is antisymmetric about the centreline
of the channel, but special body shapes exist where the trapped mode is asymmetric. For
free bodies the trapping modes and body motions are symmetric about the centreline if
the body is floating or antisymmetric if it is submerged.

1. Introduction

Oscillatory motion of a rigid body generally results in corresponding motions of
the surrounding fluid. If the body is on or near a free surface, the waves generated
by its motion propagate toward the far field and radiate energy. There is no fluid
motion if the body is fixed, or free in stable equilibrium with no external forcing.
Trapped waves are exceptions to these principles, where the fluid is in free oscillatory
motion without any forcing or radiated waves. Trapped waves are non-trivial solutions
of homogeneous boundary-value problems in linear potential theory, which represent
real physical problems; thus the existence of trapped waves contradicts the intuitive
assumption that the solutions are unique.

The concept of trapping was introduced by Ursell (1951), who considered bodies
with two-dimensional shape which extend across a channel with parallel vertical walls.
Trapping modes were established for a sloping beach and a submerged circular cylinder.
These modes consist of transverse standing waves which are attenuated exponentially in
the longitudinal direction and vanish in the far field. Thus the wave energy is ‘trapped’
in the near field.

Trapped modes have been found in subsequent works for three-dimensional bodies in
channels. Callan, Linton & Evans (1991), McIver (1991), Evans & Linton (1991) and
Linton & Evans (1992a) analysed fixed vertical cylinders with symmetrical shapes about
the centreline of the channel, which extend throughout the depth of the fluid from the
bottom to the free surface. These are the simplest cases since the solution in horizontal
planes is governed by the Helmholtz equation, and thus there is an important analogy
with two-dimensional acoustic waves in a duct. The existence of trapping for these types
of cylinders has been proved by Evans, Linton & Vassiliev (1994). Trapping by vertical
plates and cylinders which are not symmetrical about the centreline has been shown
by Evans, Linton & Ursell (1993) and Linton et al (2002). Linton & Evans (1992b) have
found trapping modes for truncated circular cylinders which do not extend over the entire
fluid depth.
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The first discovery of trapped waves for floating bodies in open water was made by
MclIver (1996). She showed that non-trivial wave motion can exist in the presence of a
fixed body with an internal free surface. Various extensions are described by Kuznetsov,
Maz’ya, & Vainberg (2002). A different type of ‘motion trapping’ was discovered by
MclIver & Mclver (2006, 2007), where the body is freely-floating and moves in response
to the oscillatory pressure force induced by its own motion without incident waves or
external forcing. These two different types of trapping, where the body is fixed or free,
can be interpreted as the limiting cases of a more general class of problems where the
body is restrained by a linear spring (Newman 2008). The fixed and free cases correspond
respectively to the limits where the spring constant is infinite or zero.

Motion trapping in a channel has been studied from a theoretical viewpoint by Nazarov
& Videman (2011), who show that multiple modes can exist for combinations of two
‘bottle-shaped’ bodies with small water-plane areas. Nazarov & Videman (2011) assume
that the motion is antisymmetric about the centre of the channel, as in most cases of
trapping by fixed bodies.

The support of trapping by bodies with more general shape can be investigated with a
free-surface panel code. For open water Newman (1999) and Mclver & Newman (2003)
used the program WAMIT to study bodies that are generated by wave-free singularities.
Recent extensions of this program make it possible to perform similar computations for
bodies in channels.

In the present work several different structures are analysed in a channel of constant
width and depth. The support of trapped waves is shown for both fixed and free bodies.
The existence of a trapped mode is indicated for fixed bodies by a singularity in the
added mass, a consequence of the fact that the radiation potential has a pole on the real
axis in the complex frequency plane (Newman 1999; Mclver & Mclver 2006). Motion
trapping by free bodies is indicated if the determinant of the coefficient matrix in the
equations of body-motion is equal to zero.

The principal definitions and formulation are summarized in §2. Fixed bottom-mounted
vertical cylinders are considered in §3, including the elliptical and rectangular cylinders
in Evans & Linton (1991) and Linton & Evans (1992a) and variants of these shapes
which are asymmetric in the longitudinal direction. Cylinders which are asymmetric in
the transverse direction are described in §4. Other types of fixed bodies are analysed
in §5 including truncated cylinders and semi-immersed ellipsoids. Motion trapping is
considered in §6 for bodies that are free to heave. Symmetric trapping modes are found
for a semi-immersed prolate spheroid and a rectangular barge. The same bodies, which
support motion trapping if they are free in heave, also support trapped modes at a
different wavenumber if they are fixed. Unlike the theory of Nazarov & Videman (2011),
these examples of motion trapping are symmetric about the channel centreline and the
body shapes do not have special features. Similar results are presented in §7 for trapping
modes that are antisymmetric in the longitudinal direction, supported by coupled surge
and pitch motions. In §8 submerged ellipsoids are shown to support trapping modes
when they are fixed, and also when they are free to sway or yaw. In one case both types
are supported at the same frequency. The principal conclusions are summarized in §9.
The numerical approach is described briefly in appendix A. Appendix B contains a proof
to justify the assumption that the trapped modes of bottom-mounted vertical cylinders
have the same depth-dependence as an incident wave of the same wavenumber.
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2. Definitions and formulation

A rigid body is situated within a channel that extends to infinity in both directions
with constant width w and depth h. The z-axis of the Cartesian coordinate system is
directed along the centreline of the channel, with the walls at y = t+w/2. The z-axis is
positive upwards, with z =0 the plane of the free surface. Except as noted below the
channel depth h =w/4 is used to correspond with the cross-section of a typical wave
tank. For the bottom-mounted cylinders in §3-4, where the wavenumbers of the trapped
modes are not affected by the fluid depth, h=0.2w/7 is used. Deeper channels are used
for the truncated circular cylinders in §5, to compare with the results of Linton & Evans
(1992D).

The modes of rigid-body translation are surge, sway, heave in the (z,y, z) directions,
respectively, identified by the indices (¢ = 1,2,3). The rotational modes about the
same axes are roll, pitch, yaw, denoted by (i =4,5,6). The same indices are used for
the components of the force and moment acting on the body. The body motions are
assumed to be of small amplitude, justifying the use of linear potential theory. The
motion is harmonic in time with frequency w and the complex factor e“? is assumed.
The wavenumber k is the real positive root of the dispersion relation w? = gk tanh kh
where g is the gravitational acceleration.

The motion of the body in each mode is defined by the complex amplitude &;. The force
and moment required to maintain the body motions are defined in the usual linearised
form (cf. Faltinsen (1990, equation 3.47))

6
(F,M) = ZFijgj (i=1,..,6), (2.1)

where

Fi' = —OJ2 (A” + Mzg) + iUJBij + C’L] (22)
Here A;; and B;; are the added-mass and damping coefficients, which represent the
components of the hydrodynamic force or moment in phase with the body acceleration
and velocity. M;; is the inertia matrix of the body mass and Cj; is the matrix of static
restoring coefficients for the heave, roll and pitch modes. The body is assumed to be in
static equilibrium, with its mass m equal to the displaced mass of fluid pV where p is
the fluid density and V' the submerged volume of the body.

In the diffraction problem, where the body is fixed and incident waves of unit amplitude
are present, the components of the exciting force and moment are defined as X;. If the
body is free to respond to incident waves of amplitude A, without external restraints,
the amplitude &; of body motion in each mode is the solution of the equations of motion

6
Y Fi¢ =AX; (i=1,.,6). (2.3)
j=1

Frequent references are made to symmetry or antisymmetry with respect to the planes
xz = 0 and y = 0. These are designated with upper-case identification of the respective
axes, e.g. X-symmetric or Y-antisymmetric. The bodies are assumed to be Y-symmetric,
except in §4 where Y-asymmetric fixed structures are considered.

The fluid motion is assumed to be Y-antisymmetric for the fixed structures in §3
and §5. The existence of trapping modes is indicated by singularities in the added-mass
coefficients in sway (Aa2) and yaw (Agg). The singularities in Asy and Agg correspond
respectively to X-symmetric and antisymmetric trapping modes in the cases where the
structure is X-symmetric. (The added-mass coefficient (A44) for rolling motion about
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the z-axis could also be used for the X-symmetric modes, except for bodies which are
axisymmetric about this axis.)

Where values of the added-mass coefficients are shown, Ass is normalized by the
displaced mass m and Agg by the product (L/4)?m where L is the length of the body.

The free bodies in §6-7 are assumed to be X-symmetric. In §6 heave motion is
considered, with the fluid motion symmetric about both x = 0 and y = 0. In §7 coupled
surge and pitch motions are considered with X-antisymmetric fluid motion.

In the cases where the motion is Y-symmetric two-dimensional plane waves can radiate
along the channel for all wavenumbers, but oblique waves can not propagate below the
cut-off k=27 /w. In these cases the normalized wavenumber kw /27 is used to describe
the results. The normalization kw /7 is used for cases of Y-antisymmetric motion, where
no waves can propagate below the cut-off k¥ = w/w (see Porter & Evans 1999). The
normalization kw/7 is also used in §4, where the body shape and fluid motion are Y-
asymietric, to facilitate comparison with the results in §3.

3. Bottom-mounted cylinders

Fixed cylinders with vertical axes which extend from the bottom to the free surface
are referred to as ‘bottom-mounted’. In previous work the circular bottom-mounted
cylinder has received the most attention. The wavenumbers for trapping given by Linton
& Evans (1992a) appear to be the most precise, with five decimals shown in their table 1
for cylinders with radius a between 0.1 and 0.9 times the half-width of the channel.
Calculations using the present method agree with those wavenumbers, with maximum
differences of one unit in the fifth decimal except for the largest cylinder 2a/w = 0.9
where the difference is six units.

Results are presented here for cylinders with elliptical and trapezoidal sections, where
trapping has been established by Evans & Linton (1991) and Linton & Evans (1992a), and
also for X-asymmetric variants of these sections. The normalized added-mass coefficients
Ags and Agg are shown in figures 1 and 2. The singularities, which are obvious features
in these plots, indicate the support of trapping modes at the same wavenumbers.

Figure 1a shows results for the elliptical cylinder with the major semi-axis a = 0.75w
parallel to the channel walls, and minor semi-axis b = a/2. For this case Linton & Evans
(1992a) find an X-symmetric trapping mode at kw/2=0.960 and an antisymmetric mode
at kw/2=1.398. These wavenumbers agree precisely with the singular points in figure la
at kw/m=0.6112 and kw/7=0.8901. Figures 1b and 1c show asymmetric variants defined
by the parametric equations

x=acosf, y=>bsinh+csin20, (—w<0<7), (3.1)

with ¢/b=1/8,1/4.

Similar results are shown in figure 2 for the rectangular cylinder and two asymmetric
trapezoids, all with length L = 2w and mean width w/2. In (b) and (c) the widths of
the ends are modified by +0.2w/7 and +0.4w/7 to show the effects of asymmetry. The
singularities in (a) at kw/7m=0.3927 and kw/7=0.7599 are consistent with the trapped-
mode wavenumbers of Evans & Linton (1991, fig. 5), but the accuracy of this comparison
is restricted by the graphical form of their results.

It is evident in figures 1 and 2 that asymmetry does not affect the peak magnitudes
significantly. This is consistent with the support of trapping shown for a different type
of X-asymmetric cylinders by Linton & Evans (1992a), and the more general existence
proof of Evans, Linton & Vassiliev (1994).

The sway and yaw modes are uncoupled for the X-symmetric structures in figures la
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FIGURE 1. Sway (A22) and yaw (Ags) added-mass coefficients of the elliptical cylinder (a) and
asymmetric variants (b-c) defined by equation (3.1). The channel width is w and k is the
wavenumber. The sketch at the top in each figure shows a section of the cylinder and channel
walls. The maximum and minimum computed values are shown in floating-point format adjacent
to each arrow, e.g. 3E6=3x10° is the maximum positive value of Asy in (a).
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FIGURE 2. Sway (A22) and yaw (Aes) added-mass coefficients of the rectangular cylinder (a)
and asymmetric variants (b-c). See the caption of figure 1 for further information.

and 2a. Thus Agg is continuous and varies slowly at the singularity of Ass, where the
corresponding trapping mode is X-symmetric, and Ags is continuous at the wavenumber
of the antisymmetric mode where Agg is singular. For the asymmetric structures coupling
is evident from the small discontinuities of Agg at the first trapping mode and Asy at the
second. These effects are larger for the structures in figures 1c and 2c.

The damping coefficients in sway and yaw should vanish if kw/m < 1, since there is
no wave radiation below the cut-off. In most cases the computed values are smaller than
the corresponding added-mass coefficients by factors of order 1076 or less. There are
exceptions very close to the trapped-mode wavenumbers where this factor is larger, and
in some cases the computed damping coefficients are negative.
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In previous work by Evans & Linton (1991), Linton & Evans (1992a), and Evans &
Porter (1997), the velocity potential of trapping modes is assumed to be of the form

b(x,y,z) = ¢(x,y) cosh(k(z + h))/ cosh(kh), (3.2)

as in the scattering problem where waves with the same dependence on z are incident
upon a fixed cylinder. The function ¢(z,y), which is governed by the Helmholtz equa-
tion, is essentially the same as the potential in the analogous two-dimensional acoustic
problem. In this case the depth h does not affect the values of the wavenumber where
trapping modes are supported.

A numerical test for the validity of (3.2) follows by comparing the added mass for
generalized modes of body motion where the displacement in the y-direction is modulated
by a function f(z) which is related to the vertical eigenfunctions for separable solutions
in cylindrical coordinates (cf. Linton & Mclver 2001, §2.1). For rigid-body sway f(z) = 1.
The generalized modes are defined by the orthogonal functions

fo(z) = cosh(ko(z + h))/ cosh(koh), (3.3)

fu(z) =cos(kn(z+h)) (n=1,2,3,...). (3.4)
Here kg is the real wavenumber of the trapping mode, defined by the singularity of the
sway added mass, and k,, are the imaginary roots of the dispersion relation at the same
frequency. Calculations of the added mass confirm that the results are similar for the
sway mode and the mode fy, with the same singularity proportional to (k — ko)~*. The
corresponding results for n > 1 vary slowly throughout the domain kw /7 <1, with values
less than one. Since the functions (fo,f,) are orthogonal the trapping mode must have
the same depth-dependence as fy and there is no evidence of any other trapping modes
with different depth-dependence, at least for this cylinder.

Appendix B contains a general proof for the validity of (3.2).

4. Y-asymmetric cylinders

Trapping modes can be supported in channels by bodies that are not symmetric about
the centreline. Evans, Linton & Ursell (1993) proved that trapping is supported by fixed
bottom-mounted vertical plates of zero thickness placed parallel to the walls but off the
centreline of the channel. Their results have been confirmed using the present numerical
method; the sway and yaw added-mass coefficients are similar to those shown in figures 1-
2 and the singularities are at the same wavenumbers as in Evans, Linton & Ursell (1993,
fig. 1). However the magnitudes of the singular peaks are reduced substantially if a small
amount of thickness is added with elliptical or rectangular sections; this suggests that
more complicated shapes are required for bodies with finite thickness.

Linton et al (2002) have shown that trapping is supported by Y-asymmetric bottom-
mounted cylinders which are defined by three geometric parameters, including the
structure shown in their figure 7 and here in figure 3(a). This cylinder is defined by
the equations

x=a(l—20)cosf, y=">b(sinf+J|sinb|)+c¢, (—7<0<m), (4.1)

with the values of the geometric parameters shown in line 1 of table 1. Note that (4.1) is
generalized from the corresponding equation (3.1) in Linton et al (2002), with an extra
parameter to represent the elongated structures in figures 3(b-c).

The added mass shown in figure 3(a) is singular at kw/m = 0.8053, which agrees
precisely with the wavenumber kw/2 = 1.265 given by Linton et al (2002). For this
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a/w bjw c/w 5 kw/m
(a) 0.25 0.25 0.0550 -0.2 0.80534
(b) 05 025 00708 -0.2 0.57122
(¢) 05 0.25 -0.0573 -0.2 0.93599

TABLE 1. Values of the parameters in (4.1) for the Y-asymmetric cylinders shown in figure 3.
For (a) and (b) the trapping modes are X-symmetric. The mode for (c) is X-antisymmetric
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FI1GURE 3. Added-mass coefficients of the bottom-mounted Y-asymmetric cylinders, defined by
(4.1) with the parameters in table 1. See the caption of figure 1 for further information.

structure the yaw added-mass Agg is non-singular, with normalized values between 0.4
and 0.9. Thus there is only one trapping mode, which is X-symmetric.

Figures 3(b-c) show elongated versions of the same shape, with the offset parameter
¢ adjusted to maximize the discontinuity of the added mass. The singularity of Agg is
maximized in 3(b) to find the shape which supports an X-symmetric trapping mode.
In 3(c) the singularity of Agg is maximized to find the shape which supports an X-
antisymmetric mode. In both cases the other coefficient appears to be singular, but the
magnitudes of the peaks are not sufficiently large to indicate trapping. The geometric
parameters and the wavenumbers of the trapped modes are shown in table 1.

Unlike the Y-symmetric cylinders in §3 the damping of these asymmetric cylinders is
non-zero, due to the symmetric component of the fluid motion which radiates waves in
the far field. For kw/m < 1 the damping coefficients Bos and Bgg are very small, except
in the immediate vicinity of the wavenumbers where the added-mass coefficients are
singular. At the singular wavenumbers the damping coefficients achieve large positive
values, with magnitudes similar to the corresponding added-mass coefficients. In this
respect the damping coefficients are similar to those observed for open water in Newman
(1999), with singularities that are numerical approximations of §-functions.

5. Other types of fixed bodies

In this section we consider bodies which have three-dimensional shapes and do not
extend over the entire fluid depth.
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hjw (A) h/w (B)
D/h 5.0 2.5 0.5 5.0 2.5 0.5
0.05 0.9348 0.9772 0.9867 0.9515 0.8422
0.1  0.8981 0.9347 0.9995 0.9992 0.9867 0.8896
0.2  0.8865 0.8981 0.9887 0.9992 0.9330
0.5  0.8857 0.8859 0.9420 0.9844
0.9  0.8857 0.8857 0.8980 0.9996

TABLE 2. Normalized wavenumbers kw/m for trapping by truncated circular cylinders with
radius a = w/4. The cylinders (A) are on the free surface, with draft D < h. The corresponding
wavenumbers are shown in columns 2-4. The cylinders (B) are mounted on the bottom, with
the upper end at z = —D. The corresponding wavenumbers are shown in columns 5-9. Blank
entries indicate that there is no evidence of a trapping mode.

Linton & Evans (1992b) have analysed truncated circular cylinders, including the cases
(A) where the cylinder intersects the free surface with draft D < h and (B) where the
cylinder is mounted on the bottom with its upper end at the depth z = —D. Trapping
is found in both cases for a range of fluid depths h and body depths D. The normalized
wavenumbers kw/2 are listed with an accuracy of two decimal places (Linton & Evans
1992b, tables 1 and 2) for cylinders with radius a = w/4. The same cases are considered
here for comparison, with the results shown in table 2. Here the notation is different, but
the order of the table is the same as in (Linton & Evans 1992b, tables 1 and 2). The entries
in each row and column can be compared directly, except for a factor of /2 difference in
the normalizations. The only significant differences are where the wavenumber kw/2 =
1.57 is given by Linton & Evans (1992b) and blank entries are shown in table 2.

With respect to case (A), the first blank entry in table 2 represents a cylinder on the free
surface with h/w=0.5 and D/h=0.05; the present calculations indicate that no trapped
mode exists for this cylinder below the cut-off at kw/m = 1. This conclusion is based
on calculations at a large number of closely-spaced wavenumbers just below the cut-off,
which show small continuous values of the added mass. Additional computations for the
same fluid depth indicate that the minimum draft for trapping is between D/h = 0.075
and 0.080. This differs from the conclusion of Linton & Evans (1992b) that a trapped
mode exists for the cylinder D/h = 0.05 in the range 1.565 < kw/2 < 7/2.

Further evidence is provided by the curve (A) in figure 4, which shows the wavenumbers
for trapping by cylinders with 0.08 < D/h < 0.13 in the same fluid depth. The contin-
uation of this curve appears to intersect the cut-off kw/m =1 just below D/h = 0.080,
confirming that there is no trapped mode below the cut-of for smaller values of the
draft. The extrapolation of this curve above the cut-off suggests the possibility of a
trapped mode which is embedded in the continuous spectrum, as has been discovered
for a bottom-mounted cylinder by Evans & Porter (1998). However computations with
smaller drafts just above the cut-off, in the vicinity of the extension of curve (A), show
no indications of singular behaviour.

It is not possible to draw similar conclusions for the cylinders (B), where blank entries
are shown for the larger values of D/h in columns 5 and 6 of table 2. The curve (B) in
figure 4 does not show any indication of intersecting the cut-off as the depth is increased.
Calculations to extend this curve for larger values of D/h are not considered reliable due
to increasing scatter near the cut-off.

Next we consider a variety of elongated bodies which intersect the free surface with
draft D < h, including truncated cylinders with the same elliptical and rectangular
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FIGURE 4. Wavenumbers of trapped modes for the truncated circular cylinders. The curve (A)
is for cylinders on the free surface with the draft D and fluid depth h = w/2, corresponding to
the data in column 4 of table 2. The curve (B) is for cylinders mounted on the bottom with the
upper end at depth D and the fluid depth h = 2.5w, corresponding to the data in column 6.

elliptical rectangular ellipsoid
D/h ksw/m kew/m ksw/m kow/m ksw/m kqw/w
0.2 0.991
0.3 0.997 0.945
0.4 0.972 0.890
0.5 0.933 0.831 0.978

0.6 0.886 0.995 0.769 0.949 0.979

0.7 0.835 0.980 0.702 0.914 0.943

0.8 0.775 0.958 0.626 0.873 0.896

0.9 0.705 0.930 0.532 0.825 0.834 0.990
1.0 0.611 0.890 0.393 0.760

TABLE 3. Wavenumbers for X-symmetric (ks) and antisymmetric (ko) trapping by fixed bodies
for different values of the draft/depth ratio (D/h). The results on the last line (D/h = 1) are
for the bottom-mounted cylinders in §3.

sections described in §3 and ellipsoids with semi-axes a, b, c. For the ellipsoids the length
L = 2a and beam B = 2b are fixed with the values L = 2w, B = 3w/4 and the draft
D = ¢ is varied. For all of these bodies the sway and yaw added mass are similar to the
corresponding coeflicients shown in figures 1-3, but the existence of singularities depends
on the draft. The results are summarized in table 3. As the ratio D/h decreases the
trapped-mode wavenumbers increase and approach the cut-off kw/7m =1 in the same
manner as for the truncated circular cylinders (A) in table 2. The blank entries in table
3 indicate values of D/h where there is no evidence of a singularity in the corresponding
added-mass coefficient for kw/m < 1. Thus the minimum value of D/h in each case is
between the values shown for the last blank line and the first non-blank line. The solid
line in figure 5 shows the sway added-mass coefficient of the ellipsoid D/h = 0.8. For this
draft the yaw added mass is non-singular.
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FIGURE 5. Added-mass coefficients A2z for the ellipsoid with semi-axes a = w, b = 3w/8. For
the floating case (solid lines) the draft is D = ¢ = 0.8h. For the submerged case described in §8
(dashed lines), ¢ = 0.4h and the centre of the ellipsoid is at z = —h/2.

6. X-symmetric motion trapping

Vertical heave motion is considered for bodies which are symmetric about x = 0 and
y = 0. Thus there is no coupling with the other modes of rigid-body motion, and it
follows from (2.2) that the conditions for motion trapping are

RQ(F33) = —w? (A33 + m) + C33 =0, (61)

Im(Fgg) = ng3 =0. (62)

The force coefficients in (6.1) and (6.2) can be computed in a straightforward manner.
However the damping is positive-definite, as a function of k, and if a zero exists it must be
quadratic. In the numerical scheme where small errors exist it is not possible to establish
the existence of a quadratic zero with certainty. To avoid this problem the heave exciting
force X3 is used as a surrogate parameter. In the domain kw < 27, where the radiated
waves in the far-field are two-dimensional, it follows from the Haskind relations that
Bsz = C]X3/|? where C is a positive real factor (cf. Linton & Meclver 2001, pp. 17-18).
Thus, if there is a wavenumber where B3z = 0, the same wavenumber is a simple zero
of X3 which can be identified with more certainty in the numerical scheme. Since X3 is
complex it is necessary to ensure that both the real and imaginary parts vanish at the
same point. This is evident from the plots of the results, and confirmed by the numerical
data which show that the argument of X3 is never close to +m/2 for kw/2m < 1. Thus if
Re(X3) passes through zero it follows that Im(X3) = 0 and Bzz = 0 at the same point.

The first example is a prolate spheroid with major semi-axis a = w/2, directed along
the z-axis, and equatorial radius b. Figure 6 shows the real and imaginary parts of
F33 for b/a = 1/4. The magnified plot shows that the simple zero of Re(F33) is at a
slightly smaller value of k relative to the quadratic zero of Im(Fjs3). Figure 7 shows the
exciting force X3, confirming that the quadratic zero is exact. Similar computations have
been performed for other values of b/a, with the values of the zero-crossings plotted
in figure 8(a) as functions of the draft/depth ratio D/h. The curves for the real and
imaginary parts intersect at D/h = 0.463 (b/a = 0.231) and kw/27 = 0.976, indicating
that motion trapping exists at this point.
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F33 for the spheroid with b/a = 1/4. The plot on the right is magnified to show the local values
near the zeros.
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FIGURE 7. Real part (solid lines) and imaginary part (dashed lines) of the heave exciting force
X3 for the spheroid with b/a = 1/4. The plot on the right is magnified to show that the
zero-crossings are at the same point.

The second example is a barge of length L, beam B and draft D, similar to the trun-
cated rectangular cylinders in §5. Computations are performed for L = w and B/L = 1/4,
with variations of the draft. Figure 9 shows Re(F33) and Im(F33) for D/h = 1/4. The
zeros of the real and imaginary parts of the exciting force X3 shown in figure 10 coincide
in the same manner as in figure 7, confirming that the quadratic zero for the damping
coefficient is exact. Similar computations have been performed for other values of D/h,
with the values of the zero-crossings shown in figure 8(b). The intersection at D/h=0.287
and kw/2w=0.926 indicates that motion trapping exists at this point.

The sharp peaks and rapid variation in these figures near kw/27 = 1.5 are attributed
to resonant cross-waves in the gaps between the body and the walls. This resonance is
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FIGURE 9. Real part (solid lines) and imaginary part (dashed lines) of the vertical force coefficient
F33 for heave of the barge with D/h = 1/4. The plot on the right is magnified to show the local
values near the zero-crossings.

larger for the barge due to the constant width of the gaps. The zero or near-zero values
of F33 near kw/2m = 1.7 are discussed in §9.

Figure 11 shows the sway added-mass coefficients of the spheroid b/a = 0.231 and
barge D/h = 0.287, which support motion trapping. In figure 11(a) the singularity at
kw/2m = 0.482 indicates an X-symmetric trapping mode for the spheroid if it is fixed.
Similarly in figure 11(b) the singularity at kw/2m = 0.481 indicates an X-symmetric
trapping mode for the fixed barge. Thus these particular bodies can support two different
trapping modes, one if they are fixed and the other if they are free to heave.

In addition to the existence of motion trapping at specific values of the beam and
draft, the heave damping is zero for a range of values as indicated by the dashed curves
in figure 8; thus these bodies can oscillate in the heave mode without radiating waves in



10 0.015F
8 Re(X,) s Re(X,)
[ Im(X,) 001\ ----- Im(X;)
6 [
r 0.005f _
4 [ ~ =~
2F of —
or = -0.005f T
2F E
i -0.01fF
Ar r
N R ‘ -0015F, |, | 1 L
0 0.5 1 1.5 0.925 0.93 0.935
kw/21t kwi/21t

Trapped-wave modes

13
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FIGURE 11. Added-mass coefficients A2z of the motion-trapping spheroid (a) and barge (b).
The singularities at kw/2m = 0.482 in (a) and kw/27 = 0.481 in (b) indicate trapping modes at
these wavenumbers if the bodies are fixed.

the far field. Figure 12 shows a contour plot of the free-surface elevation for the barge
D/h=1/4 at kw/2m = 0.930, where there are no radiated waves. Heaving bodies with
small water-plane areas (compared with the area of horizontal sections below the free
surface) are ‘wave-free’ at one wavenumber, due to cancellation of the waves generated
by the normal velocities above and below the point of maximum area (cf. Kyozuka &
Yoshida 1981). However the spheroid and barge do not have this shape, and it is surprising
that bodies such as these can be wave-free in a channel. Figure 12 suggests that there
is cancellation in this case between the positive upward heaving motion of the body and
the negative free-surface elevation near the wall abeam of the vessel.



14 J. N. Newman

FIGURE 12. Contour plot of the free-surface elevation for unit heave amplitude of the barge
D/h = 1/4 at the wavenumber kw/2m = 0.930, where the damping is zero. At this wavenumber
the elevation is real, oscillating in proportion to coswt. The plot shows the elevation at time
t = 0, when the heaving motion is positive upwards. Only one quadrant of the free surface is
shown since the elevation is symmetric about z = 0 and y = 0.

7. X-antisymmetric motion trapping

If the body is free to surge in the longitudinal direction (¢ = 1) and pitch about the
transverse axis (¢ = 5) the motion is X-antisymmetric. The equations of motion are
coupled, with the elements of the coefficient matrix

Fi1 = —w? (A1 +m) + iwBy, (7.1)
Fis = —w? (Ays + mzy) + wBis, (7.2)
F51 = Fis, (7.3)
Fs5 = —w? (A55 + mk‘iy) + iwBss + Css. (7‘4)

Here m is the body mass, distributed symmetrically about x = 0, z, is the vertical
coordinate of the centre-of-gravity, and ky, is the radius of gyration about the y-axis.
(55 includes the hydrostatic restoring moment and the gravitational moment —mgz,.

Motion trapping is supported if the determinant |Fj;| = 0. This is achieved in the
examples below by finding suitable combinations of the parameters such that Fi5 = 0
and F55 = 0. z, and k,, can be varied independently of the wavenumber and body
geometry, as long as they are within physically reasonable limits, to satisfy the conditions
Re(F15) = 0 and Re(F55) = 0. A more fundamental question is if it is possible to find a
suitable combination of the geometry and wavenumber such that the damping coefficients
Bis and Bss are both zero. This may seem unlikely, but if the body is wave-free in the
pitch mode in an analogous manner as shown for heave in figure 12, the corresponding
pressure is real, and thus both Bis and Bss are equal to zero at the same wavenumber.
Similarly, if there is a different wavenumber where the body is wave-free in surge and
the corresponding pressure is real, both By, and Bs; are zero. Since Bis = By from
reciprocity, these coefficients have zeros at both wavenumbers as shown in figure 13.

Table 4 shows examples of motion trapping for the spheroid and barge. The minor semi-
axis of the spheroid is b = w/8, corresponding to a beam B = w/4 and draft D = w/8.
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FIGURE 13. Damping coefficients of the spheroid (a) and barge (b) in the surge (i = 1) and
pitch (¢ = 5) modes, for the cases where L/w = 1.8. The cross-coupling coefficients Bis have
simple zeros at the wavenumbers where Bi1; = 0 and Bss = 0.

spheroid barge
L/w kw/21 kyy/a z4/T kw/2w kyy/a z4/T

1.5 0.986 0.542 -0.642 0.936 0.695 -0.875
1.6 0.954 0.581 -0.563 0.896 0.752 -0.770
1.7 0918 0.618 -0.508 0.857 0.811 -0.698
1.8 0.882 0.654 -0.465 0.819 0.869 -0.646
1.9 0.848 0.689 -0.428 0.783 0.927 -0.607
2.0 0815 0.724 -0.395 0.750 0.984 -0.577

TABLE 4. Conditions for X-antisymmetric trapping with the body free in the surge and pitch
modes. L/w is the ratio of the body length to the channel width, kw/27 is the normalized
wavenumber, kyy/a is the ratio of the radius of gyration to the half-length a = L/2, and z4/T
is the ratio of the vertical coordinate of the centre of gravity to the draft.

For the barge B = w/4 and D = w/16. Combinations of the length and wavenumber that
support motion trapping are shown for L/w between 1.5 and 2.0. This data is assembled
in the following manner. For each value of L/w the wavenumber is found where the pitch
exciting moment X5 = 0, and thus Bss = 0 and Bys = 0. Then z, is evaluated to make
the real part of (7.2) equal to zero. Finally, the radius of gyration k,, is found to make
the real part of (7.4) equal to zero. If the distribution of the body mass is restricted to the
internal volume, the physical limits for these parameters are ky, <L/2 = a and z,>—T.
The wavenumber is assumed to be below the cut-off kw /27 = 1. These restrictions limit
the range of L/w.

Comparing the X-symmetric trapping modes associated with heave and the antisym-
metric modes associated with surge and pitch, the body must be longer to support
antisymmetric modes, as in the case of fixed bodies in §5. On the other hand, the
parameters k,, and z, can be adjusted to satisfy the requirements that (7.2) and (7.4)
vanish. Thus there is more freedom to assign the dimensions of the body to support
antisymmetric modes.
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D/h ksw/m kqw/m kmiw/T

0.1 0971 0.990
0.2 0.944 0.988
0.3 0911 0.985
0.4 0.874 0.980
0.5 0.832 0.974

0.6 0.785 0.975 0.964
0.7 0.732 0.948 0.949
0.8 0.670 0.911 0.922
0.9 0.592 0.858 0.863

TABLE 5. Wavenumbers for X-symmetric (ks) and antisymmetric (kq) trapping modes supported
by fixed submerged ellipsoids with different values of the ratio (D/h). D = 2c is the body-depth.
The centre is at z = —h/2. The last column shows the wavenumbers kp,;: for motion-trapping
modes supported by the same body if it is free in the sway mode.

8. Trapping by submerged ellipsoids

Submerged ellipsoids with semi-axes a, b, ¢ are considered to illustrate the support of
trapping if the body is below the free surface. The length L. = 2a = 2w and beam
B = 2b = 3w/4 are fixed, with the same dimensions as the floating ellipsoid in §5. The
body centre is at z = —h/2 and the body depth D = 2¢ is varied.

The sway added-mass coefficient is shown in figure 5 for D/h = 0.8, and compared with
the same coefficient for the floating ellipsoid. It is evident that an X-symmetric trapping
mode is supported in both cases if the body is fixed. The trapped-mode wavenumbers
are summarized in table 5 for the submerged body. X-symmetric trapping modes are
supported for all values of D/h, and antisymmetric modes for D/h > 0.6. It is interesting
to note that trapping modes are supported by the submerged ellipsoid for all values of
D/h whereas the results for the floating body in table 3 show that the draft must be
greater than half the depth.

Another difference between the floating and submerged ellipsoids is the Y-symmetry
of motion trapping. No examples have been found for submerged bodies where the heave
(or pitch) damping is zero, but Y-antisymmetric modes of body motion are wave-free
below the cut-off kw = 7, and the corresponding damping coefficients are zero. Thus
for a body that is free in the sway mode, where there is no hydrostatic or gravitational
restoring force, motion trapping is supported if

Az +m =0. (8.1)

The results in figure 5 indicate that this condition is satisfied only in the submerged case,
at the wavenumber kw/m ~ 0.92 where Agz/m = —1. For the floating bodies considered
in §6 either Ass > 0 or Ass < —m in the domain kw < 7.

The last column of table 5 shows the wavenumbers where (8.1) is satisfied. Comparison
of the data in the last two columns of this table shows that they are equal if D/h is slightly
less than 0.7. Further computations reveal that (8.1) is satisfied for the ellipsoid with
D/h=0.692 at kw/m=0.951 and the yaw added-mass coefficient Agg is singular at the
same wavenumber. Thus for this specific geometry the antisymmetric trapping mode for
the fixed body and the symmetric motion-trapping mode for the free body occur at the
same frequency.

Similar computations indicate that X-antisymmetric trapping is supported if the body
is free to yaw about the z-axis and the moment of inertia Igg is adjusted to cancel the
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negative added-mass coefficient Agg. This is possible only for the two deepest ellipsoids
in table 5, if the distribution of the body mass is restricted to the internal volume, since
these are the only cases where —ma? < Agg < 0.

The effect of coupling between sway and roll has not been considered. These modes
can be uncoupled by adjusting the moment of inertia I44 and the vertical position of the
centre of gravity.

9. Conclusions

The support of trapping modes in a channel has been demonstrated for several bodies,
including the two types of trapping where the body is fixed or free to move in response
to the oscillatory pressure. For the spheroid and barge described in §6, and also for
the submerged ellipsoids in §8, both types of trapping are supported by the same
body at different wavenumbers. In one particular case for the submerged ellipsoid, X-
antisymmetric trapping of the fixed body and X-symmetric motion trapping of the free
body occur at the same frequency.

The simple shapes of these bodies, and the straightforward manner in which they are
derived, suggest that bodies which support trapping modes in channels are ubiquitous.
Trapping by fixed Y-symmetric structures is easily demonstrated over a range of geo-
metric parameters. For Y-asymmetric structures the geometry is more restricted. Motion
trapping is also found for simple shapes, but the geometric parameters are restricted by
the requirement that both the real and imaginary parts of the complex force coefficients
vanish at the same wavenumber.

Tables 1-5 list the relevant geometric parameters and wavenumbers where trapping
is supported for various cases. Comparisons with previous works are favourable in most
cases. The only discrepancy is noted in §5, for a truncated circular cylinder with shallow
draft. For that particular case a trapped mode very close to the cut-off is reported by
Linton & Evans (1992b), whereas the present computations show no evidence of this
mode. Other examples are also shown in table 3 of elongated bodies where there is no
trapping if the draft is less than a minimum value. The discrepancy for the truncated
circular cylinder would benefit from further investigation.

Since the results are numerical, it is important to consider their validity in establishing
the existence of ‘pure’ trapping modes. Trapping by a fixed body at the wavenum-
ber k = ko is indicated by a singularity of the added-mass coefficient proportional to
(k — ko)~!. In the figures showing Asy and Agg vs. k the singularities are clearly of this
form, at least within the accuracy of the plots. The maximum absolute values of the
normalized added-mass coefficients are of order 10> — 105. Since the computations are
performed in single precision these magnitudes are sufficiently large to assume that they
correspond to analytic singularities and represent pure trapping modes. In addition to
their large magnitudes the adjacent peaks are nearly contiguous, giving close numerical
approximations to the expected singularities; for example the values shown for the
positive and negative peaks of Asy in figure la are computed at kw/m = 0.611185
and kw/m = 0.611186. For the bottom-mounted cylinders in §3-4 the agreement of the
singular wavenumbers with the results in Evans & Linton (1991), Linton & Evans (1992a)
and Linton et al (2002) supports the conclusion that these are pure trapping modes. This
provides substantial confidence that the same conclusion applies for the other bodies,
where the same numerical method is used.

The demonstration of ‘pure’ motion trapping by free bodies is more conclusive, without
regard for the effects of small numerical errors. This is explained in §6, where the existence
of quadratic zeros of the damping coefficients are based on corresponding first-order zeros
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of the exciting forces, and the coincidence of the zeros for the real and imaginary parts
of the force are based on the intersections of two lines in the geometric parameter space.

Y-symmetric geometry of the bodies has been assumed in most cases. The exceptions
are bottom-mounted cylinders with special shapes described in §4, which are motivated
by the Y-asymmetric structure found by Linton et al (2002). X-symmetry is not required
for trapping by fixed vertical cylinders, as shown by Linton & Evans (1992a) and Evans,
Linton & Vassiliev (1994), and by the results for the asymmetric structures in figures 1
and 2. No examples are known where the body is asymmetric about both planes, but it is
not likely that this is a fundamental obstacle to the support of trapping by fixed bodies.
Similar results are expected for floating or submerged bodies which do not extend from
the free surface to the bottom.

In the investigations of motion trapping both transverse and longitudinal body sym-
metry have been assumed. Both symmetric and antisymmetric trapping modes are
demonstrated. For floating bodies the X-symmetric modes are associated with a single
degree of freedom in heave. X-antisymmetric modes are associated with coupled motions
in surge and pitch. Antisymmetric modes require a longer body but there is more freedom
to assign the beam and draft since the radius of gyration and vertical coordinate of the
centre of gravity are free parameters. It is important, and somewhat surprising, that both
the pitch damping coefficient Bgs and the cross-coupling coefficient By5 are equal to zero
at the same wavenumber. This is explained by the fact that the pressure field is real
throughout the fluid domain at the wavenumber where no radiated waves are generated
by pitching motion of the body. In all of these cases the body motions and trapping
modes are Y-symmetric.

Y-antisymmetric trapping modes of submerged ellipsoids are established in §8, both
for fixed bodies and for bodies that are free in sway or yaw. No cases have been found
where Y-antisymmetric motion-trapping modes are supported by floating bodies, or Y-
symmetric modes by submerged bodies.

The investigations of trapping by fixed bodies in §3-5 are restricted to wavenumbers
below the cut-off k = 7/w for Y-antisymmetric waves, and similarly for motion trapping
by submerged ellipsoids in §8. This restriction is especially helpful to establish Y-
antisymmetric motion trapping, since there is no wave damping. For Y-symmetric motion
trapping by floating bodies in §6 and §7 the wavenumbers are below the cut-off k = 27 /w;
thus the radiated waves are two-dimensional and the Haskind relations can be used to
ensure that the quadratic zeros of the damping coefficients are exact.

Evans & Porter (1998) have shown that trapping is supported above the cut-off by
a bottom-mounted circular cylinder, but only for one unique combination of the radius
and wavenumber relative to the channel width. It is likely that other fixed structures
with isolated values of their dimensions support trapping above the cut-off, but it may
be difficult to search for these in the multidimensional parameter space.

With respect to motion trapping above the cut-off wavenumber, it is interesting to
note in figures 6 and 9 that Re(Fs3) = 0 and Im(F33) is very small, near kw/2r = 1.7.
Extensive calculations have been made in this regime searching for bodies where F33 = 0,
with negative results. Combinations of the dimensions can be found such that the heave
damping is practically zero, but it is not possible to confirm that this quadratic zero is
exact and it is always at a wavenumber greater than the zero of Re(F33). These results
suggest that, for the simple types of structures considered here, motion-trapping is only
supported in the heave mode below the cut-off & = 27/w. On the other hand, motion
trapping is supported in open water by other types of structures, such as the toroids of
Mclver & Mclver (2007). This implies that special types of bodies may support motion
trapping above the cut-off in a channel of sufficiently large width.
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The results shown here are based on computations for a limited sample of body shapes
and channel dimensions. These restrictions may affect the conclusions, particularly with
regard to the requirements for geometrical symmetry. Establishing proofs, or demon-
strating counter-examples, are challenging problems for theoretical research.

This work was motivated by stimulating discussions at the 31st International Workshop
on Water Waves and Floating Bodies (IWWWFB). I am grateful to the referees for their
comments and suggestions, including the proof in appendix B.

Appendix A. Computational notes

The present computations have been performed using the radiation-diffraction code
WAMIT. This program uses the boundary-integral-equation method to solve for the
velocity potential based on Green’s theorem. The Green function (cf. Linton & Mclver
2001, Appendix B.3) satisfies the boundary conditions on the free surface and bottom,
and the radiation condition in the far field. Thus the computational domain for bodies in
open water is restricted to the submerged surface of the body. For the analysis of bodies
in channels the Green function is extended to satisfy the boundary condition on the
walls using the method of images with accelerated convergence, as described by Newman
(2016).

The numerical solution is based on analytic representation of the body surface and B-
spline representation of the unknown velocity potential. This provides greater accuracy
compared to the conventional low-order panel method where the geometry is approxi-
mated by quadrilateral elements and the potential is represented on each element by a
constant or linear function.

The accuracy of the numerical results is controlled by discretization parameters which
determine the number of unknown B-spline coefficients. These parameters have been
adjusted in the present calculations with the objective to achieve an accuracy of five
decimals for the computed force coefficients, and the same accuracy in the computations
of the wavenumbers where trapping is supported. This accuracy has been verified by
convergence tests in sub-sets of the results.

For the analysis of plates with zero thickness described in §4, to compare with the
results of Evans, Linton & Ursell (1993), a modified integral equation is used with a
distribution of normal dipoles on the body surface. For further details see WAMIT, Inc
(2016).

Appendix B. Proof of equation 3.2

For bottom-mounted cylinders the velocity potential can be expanded in the form
$(@,y,2) = > dn(,9) fn(2), (B1)
n=0

where the functions f,(z) are defined by (3.3) and (3.4). From the governing Laplace
equation it follows that

(V2= k2) ¢p(z,y) =0 for (n>0). (B2)
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Since the boundary conditions on the cylinder and wall are homogeneous and the
potential of a trapped mode vanishes at infinity, it follows from Green’s theorem that

/(|V¢n|2+k3|¢n|2)d5:0 for (n>0), (B3)
D

where D is the two-dimensional plane of the fluid domain. Since k,, is real, ¢,, = 0 is the
only solution for n > 0.
This proof has been suggested by the referees.
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