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The conventional boundary integral equation for the solutions of linear wave–body interactions is extended to include the
radiation solutions because of oscillatory pressures applied on the free surface. Coupled with the constraints that determine the
pressure, the extended integral equation is applicable to various problems where a part of the bodies contains the free surface
with oscillatory pressures. As illustrative examples, the analyses of wave interactions with an air-cushion vehicle and an
oscillating water column device are made. As an additional application, we consider moon pool and gap resonances where the
use of oscillatory pressures is an efficient way to introduce artificial damping to suppress excessive free-surface elevation of the
potential flow.

INTRODUCTION

Structures such as oscillating water columns (OWCs) and air-
cushion vehicles (ACVs) have air chambers with internal free
surfaces (air/water interfaces). To analyze the behavior of these
types of structures, the hydrodynamic and aerodynamic solutions in
the respective regions are matched at the interface. In the context
of the linearized potential theory, two alternative approaches are
available. In one, the vertical displacement (or vertical velocity) of
the free surface is represented by a set of prescribed modes, and
the continuity of pressure is applied to determine the coefficients
of these modes. In the second approach, the coefficients of the
prescribed oscillatory pressure modes can be determined from the
continuity of the vertical velocity. In the earlier applications of
the panel methods, the former was preferred primarily because
the relevant modes are defined by Neumann boundary conditions
in the same manner as the conventional rigid body modes. The
application of this approach to the analysis of OWCs is described
in Lee et al. (1996) and of ACVs in Pinkster (1997), Pinkster et al.
(1998), and Lee and Newman (2000).

The second approach, which was briefly described in Lee et
al. (1996), is expanded in this paper. The characteristic acoustic
wavelength is of O (1000 m) at the frequency of O (1/s). Since the
air pressure varies slowly compared to the free-surface elevation,
fewer modes are required in the second approach relative to the
first, where a relatively large number of modes may be required to
describe the vertical displacement of the interface. The advantages
of the second approach include (i) little effort to find and describe
an appropriate set of modes, (ii) direct interpretation of the compu-
tational results, and (iii) improved computational efficiency due to
the reduced number of modes.
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In the following section, the theory of the present approach is
described. First, the pressure radiation potentials that satisfy the
boundary condition of oscillatory pressure on the interface and
homogeneous Neumann conditions on the body surface are defined.
To be general, the air pressure is assumed to be spatially variable.
Then the extended integral equation is derived to evaluate the
pressure radiation potentials. Finally, a set of equations governing
the motion of the body and the pressure on the interface is derived.

As a first computational example, a rectangular ACV model is
analyzed, and the computational results obtained by two approaches
are compared along with the experimental results from Pinkster et
al. (1998). The OWC is analyzed next. The parameters, such as the
optimum pressure and the capture width, are evaluated in a simpler
manner, using the integrated forces corresponding to the pressure
mode.

As a last example, we consider resonance of the free-surface
elevation observed in the moon pool or in the gap between narrowly
spaced vessels where the computations based on the linear potential
flow often overpredict the wave height. Feng and Bai (2015),
in their fully nonlinear simulations, found that the free-surface
nonlinearity plays a minor role in suppressing the overpredicted
resonance in the linear solutions. This confirms the experimental
findings by Molin et al. (2009) that the viscous effects, primarily
flow separation, account for the discrepancy between the linear
solutions and measurements.

A few techniques have been proposed to introduce drag forces,
simulating the viscous effects, to damp the resonant modes. For
example, in Newman (2004), a flexible lid is placed on a part of
the free surface, and the vertical displacement of the lid is subject
to an appropriate damping force. Chen (2004) proposed a method
that, in effect, applies a continuous pressure distribution on the free
surface to extract energy out of the fluid. The effect of this pressure
distribution can be taken into account efficiently by using a set
of prescribed pressure modes. Using a couple of computational
examples, we show that the use of pressure modes is a simple
and effective alternative to the flexible lid to damp the resonant
behavior.
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FORMULATION

Cartesian coordinates x = 4x1 y1 z5 are used with the vertical
z-axis positive upward and with z= 0 the plane of the undisturbed
free surface. We consider a rigid body floating on the free surface
partially supported by the pressure in the air chamber or a fixed
body with an air chamber as in an OWC. The wetted body surface
is denoted by Sb , the fixed surface of the air chamber by Sc , and
the horizontal air and water interface by Si. The complete closed
surface bounding the air chamber is denoted by Sa = Sc + Si. The
complete boundary surface of the water on and inside the body is
Sw = Sb + Si. The free surface outside the body is denoted by Sf .

The fluid velocity is represented by the gradient of the velocity
potential ê, which satisfies the Laplace equation:

ï 2ê = 0 (1)

in the fluid domain. Assuming regular incident waves, the velocity
potential can be expressed in the complex form:

ê = <
{

�ei�t
}

(2)

where < denotes the real part, � is the frequency of the incident
wave, and t is time.

From the linearized Bernoulli equation, the dynamic pressure on
the free surface is:

p4x1 y1 z5= −i���4x1 y1 z5−�g� (3)

where � is the water density, g is gravity, and � is the wave elevation
relative to the mean position of the free surface. Combined with
the kinematic condition �z = i�� , it follows that:

�z −K�= −
i�

�g
p on Si and Sf (4)

where K =�2/g. Here the subscript z denotes the partial derivative
with respect to z.

In Eq. 4, it is convenient to express the oscillatory pressure
distribution, yet to be determined, in terms of prescribed modes in
a form:

po4x1 y5≡ p4x1 y1 zl5= −�g

6+Np
∑

j=7

�jnj4x1 y5 (5)

where zl ≤ 0 is the mean vertical coordinate of Si, nj4x1 y5 is
the nondimensional pressure distribution mode, �j is the model
amplitude coefficient with the dimension of length, and Np is the
number of modes. When po is assumed to be uniform, Np = 1 and
n74x1 y5= 1. On Sf , p4x1 y105= 0.

On Sb , � is subject to the Neumann boundary condition:

�n = V · n (6)

where V4x5 is the velocity vector of the points on the body surface
and n denotes the normal vector.

The velocity potential can be expressed in terms of the diffraction
and radiation components:

�=�D +�R (7)

where

�D =�I +�S (8)

�R = i�

6+Np
∑

j=1

�j�j (9)

In Eq. 9, the coefficients �j for 1 ≤ j ≤ 6 are the displacements in
surge, sway, heave, roll, pitch, and yaw modes. The incident wave
system is defined by the potential:

�I =
igA

�

cosh 6k4z+h57

cosh kh
exp4−ik4x cos�+ y sin�55 (10)

where A is the amplitude, k is the finite-depth wave number, h is the
fluid depth, and � is the wave angle relative to the positive x-axis.

We define nj such that 4n11 n21 n35= n, 4n41 n51 n65= x × n, and
nj = 0 for j ≥ 7 on Sb . On Si, nj = 0 for 1 ≤ j ≤ 6 and, for j ≥ 7,
nj is the same as the nondimensional pressure distribution mode in
Eq. 5. With this definition, each component in Eq. 9 is subject to
the conditions:

�j n
= nj on Sb (11)

�j z
−K�j = nj on Si (12)

and the diffraction potential is subject to the conditions:

�Dn = 0 on Sb (13)

�Dz −K�D = 0 on Si (14)

The velocity potentials in Eqs. 7 to 9 are also subject to the
homogeneous free-surface condition on Sf and, with the exception
of �I , to the radiation condition of outgoing waves in the far field.

�j and �D can be derived from appropriate variants of Green’s
theorem, using the free-surface Green function G4Î3x5, which
satisfies the homogeneous form of the free-surface boundary
condition on Sf . The resulting integral equations can be summarized
as:
(

2
4

)

��j4x5+

∫∫

Sw

�j4Î5L4G4Î3x55dÎ

=

∫∫

Sw

nj4Î5G4Î3x5dÎ (15)

and
(

2
4

)

��D4x5+

∫∫

Sw

�D4Î5L4G4Î3x55dÎ= 4��I 4x5 (16)

where

L =

{

¡/¡n� � ∈ Sb

¡/¡n� −K � ∈ Si
(17)

The factor 2� is applied if the boundary surface is below z= 0,
and the factor 4� is applied if the boundary surface is on z= 0.
In the latter case, the integral over Si on the left-hand sides of
Eqs. 15 and 16 vanishes, since the Green function satisfies the
homogeneous free-surface condition.
�j in Eq. 9 is derived in part from the equations of motion

corresponding to the rigid body modes 1 ≤ j ≤ 6. The total forces
and moments include the hydrodynamic and hydrostatic pressure
on Sb and the aerodynamic pressure on Sc . (Hydrostatic pressure
−�gzl on Sc affects the restoring moments of the roll and pitch
modes and should be included.) The aerostatic pressure can be
neglected on the assumption co >> g/w where co is the sound
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velocity. Additional equations for 7 ≤ j are obtained by invoking
continuity of the vertical velocity across Si in the form:

−i�g

�

(

∫∫

Si

Vz4x1 y5ni dS −

∫∫

Si

�zni dS

)

= 0 (18)

where Vz4x1 y5 is the vertical velocity distribution of air on Si.
Upon substituting the velocity potentials Eqs. 8 and 9, subject to
the boundary conditions Eqs. 11 to 14, the second term of Eq. 18
can expressed in terms of the hydrodynamic and hydrostatic forces
as described below. The force represented by the first term is
dependent on the aerodynamic solution in the air chamber.

The complete set of equations for �j can be summarized as:

6+Np
∑

j=1

6−�24Mij +Aij +Aa
ij5+i�4Bij +Ba

ij5+4Cij +Ca
ij57�j =Xi0(19)

Here Mij is the inertia of the structure, and Mij = 0 for 7 ≤ i

or 7 ≤ j . The radiation pressure forces are represented by the
coefficients:

Aij −
i

�
Bij = �

∫∫

Sw

�jni dS (20)

The coefficients are symmetric, which can be easily verified by
applying Green’s theorem to �i and �j subject to the boundary
conditions Eqs. 11 and 12. The exciting force components are:

Xi = −i��
∫∫

Sw

�Dni dS (21)

The hydrostatic coefficients Cij are the same as the conventional
rigid body motions for i ≤ 6 and j ≤ 6, with the understanding that
integration of the hydrostatic pressure is extended over Sb and the
buoyancy force includes the hydrostatic pressure −�gzl exerted
on Sc , as shown in WAMIT (2015). For 7 ≤ i and 7 ≤ j:

Cij = −�g
∫∫

Si

ninj dS (22)

When po is uniform, C77 = −�gSi, where Si is understood as the
area of the interface.

The superscript a in the coefficients Aa
ij , B

a
ij , and Ca

ij denotes
that they depend on the solution of the linearized aerodynamic
problem in the air chamber subject to the oscillatory pressure po

on Si, appropriate boundary conditions on Sc , and other effects in
the chamber. They may be considered as the external constraints
on �j in the equations of motion Eq. 19 and are evaluated from the
following relation:

6+Np
∑

j=1

4−�2Aa
ij + i�Ba

ij +Ca
ij5�j

=















−

∫∫

Sc

P4x5Ni dS for 1 ≤ i ≤ 6

−i�g

�

∫∫

Si

Vz4x1 y5ni dS for 7 ≤ i

(23)

where P4x5 is the aerodynamic pressure, 4N11N21N35= n, and
4N41N51N65= x × n on Sc .

Fig. 1 Perspective view of the submerged portion of the model,
Sw = Sb + Si, viewed from below. Part of the air/water interface, Si,
is visible inside the vertical walls.

AIR-CUSHION VEHICLE (ACV)

We consider the model with one air chamber (shown in Fig. 1)
used by Pinkster et al. (1998) for their free-floating model tests.
The dimensions of the submerged portion of the model are length
2.5 m, beam 0.78 m, and draft 0.15 m. The wall thickness is 0.02 m
at the ends and 0.06 m at the sides. The air chamber extends from
−0.05 m below the exterior free surface to 0.13 m above. The
water depth is 2.5 m, the center of gravity is at 401010015 m5,
and the pitch radius of gyration about this point is 0.751 m. The
relevant acoustic added mass and the restoring force coefficients
used in the computations are derived from the solution of the
Helmholtz equation in the Appendix.

Figure 2 shows the heave and pitch responses computed at 100
frequencies. The higher-order panel method is used with panels
of approximately 0.8 m length. The computational results are
converged, with respect to the panel length, up to the graphical

Fig. 2 Heave and pitch response amplitude operators (RAOs)
normalized by the incident wave amplitudes A and A/L, respectively.
L= 205 m is the length of the model. The lines are computed by the
present method, the pluses (+) by Lee and Newman (2000), and the
circles (o) by Pinkster et al. (1998). The dashed line corresponds to
the results with a uniform pressure only.
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accuracy. The results computed by the current approach using two
pressure modes, the uniform and the first antisymmetric modes in x
in Eq. 38, are compared with the corresponding results in Lee and
Newman (2000) computed by the first approach using 32 Fourier
modes. The response amplitude operators (RAOs) computed by
these two approaches are identical, including the resonant peaks.
The pitch RAO without the antisymmetric pressure mode is also
presented. The latter shows some difference near the resonant peak
where the pitch RAO is approximately 10 times the wave slope
because of a strong sloshing resonance. The computational results
agree quite well with the experimental results, except in the vicinity
of the resonant peak of the pitch mode. The difference may be
attributed to viscous and nonlinear effects.

OSCILLATING WATER COLUMN (OWC) DEVICE

We consider one of the oscillating water column (OWC) devices
considered in Lee et al. (1996). The configuration of this device is
illustrated in Fig. 3. Because the device is sufficiently small, a
uniform pressure distribution is assumed in the following.

As shown in Evans (1982), the power transferred across the
interior free surface is equal to the time-average of the rate of
energy flux, which takes a form:

dE

dt
=

∫∫

Si

Pêz dS =
1
2
<

{

p∗

o

∫∫

Si

�z dS

}

=
�2

2g
<

{

p∗

o

∫∫

Si

�dS

}

=
�<4ip∗

oX75

2�g
−

�2�po�
2B77

2�2g2
(24)

The optimum pressure is the zero of the derivative of Eq. 24 with
respect to po and is given by:

Po =
i�g

2�
X7

B77
(25)

It is customary to normalize the energy flux rate in respect to the
corresponding rate of input in the incident wave system per unit
width of the wave crests, equal to 41/25�gA2vg where vg = d�/dk
is the group velocity. This ratio is known as the capture width. The
capture width, corresponding to the optimum pressure Po , is denoted
by Wo, which represents the theoretically maximum transfer rate.

The optimum pressure and capture width are compared with
corresponding parameters of a practical model in the following.

Fig. 3 Configuration of the submerged portion of the OWC. The
horizontal dimensions are 20 m x 20 m, the draft is 5 m, and the
wall thickness is 0.5 m. The height of the aperture on the OWC is
3 m. The OWC is mounted on the sea bottom.

In the context of linear analysis, the behavior of the turbine is
modeled by a linearized damping force that is proportional to the
average rate of air flow across the interface such that:

Bt

∫∫

Si

Vz dS = poS
2
i (26)

Here Bt is the damping coefficient, and Si on the right-hand side is
understood as the surface area of the interface. Upon substituting
the relations Eq. 26 and po = −�g�7 into Eq. 23, we find that the
damping coefficient for the uniform pressure mode, �7, is:

Ba
77 =

4�g52S2
i

�2Bt

=
C2

77

�2Bt

(27)

�7 is then evaluated in Eq. 19 with the result:

po =
−�gX7

4C77 −�2A775+ i�4B77 +Ba
775

(28)

The rate of the energy flux can be expressed in the form:

dE

dt
=

1
2
<

{

p∗

o

∫∫

Si

Vz dS

}

=
S2
i

2Bt

�po�
2
=

�2S2
i

2C2
77

Ba
77�po�

2 (29)

In Eq. 29, the maximum rate occurs when:

Ba
774�5=

√

B2
77 + 4C77 −�2A775

2/�2 (30)

The pressure and the capture width corresponding to the maximum
rate are denoted by Pt and Wt . Pt = Po and Wt = Wo at the
resonance frequency of the pumping mode, � =

√

C77/A774�5,
where Eq. 29 is reduced to Eq. 24.

The computational results are shown in Fig. 4. In the computa-
tions, the wavelength of the incident wave varies approximately
from 30 m to 1,200 m. The corresponding nondimensional wave
number, kL, varies from 0.05 to 2 where L is taken as 10 m, the
half-beam of the OWC. We consider the case of head seas, where
the direction of the incident wave is toward the aperture face at a
right angle. X7 and B77 show that the resonance of the pumping
mode occurs near kL= 005 and that of the sloshing mode near
kL= 107. Pt and Wt are close to Po and Wo between kL= 003 and
kL= 005, over which the ratio �4C77 −�2A775/�B77� is small and
flat, as shown in Fig. 5.

Fig. 4 The figure shows X7, B77, Po, and Wo, normalized by
�gA21�L3�1�gA, and L, respectively, against kL. It also shows
normalized Pt and Wt .
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Fig. 5 The figure shows the ratio �4C77 −�2A775/�B77�

MOON POOL/GAP RESONANCE

We illustrate the use of the pressure mode to damp the resonant
modes in this section. For this purpose, it is convenient to introduce
an additional body or bodies that consist of one or more interfaces
Si on the free surface of a moon pool or a gap. Si, in this context,
will be referred to as the “pressure patch.” The multibody interaction
among the physical bodies and the bodies represented by the
pressure patches can be analyzed by the method described in the
second section. The external damping coefficients Bt or Ba

ij are
now artificial parameters that may be adjusted in accordance with
the experimental results.

We first consider a vertical circular cylinder with a concentric
circular moon pool in infinite water depth. The draft and radius
of the cylinder are 1 m and 0.5 m, respectively. The radius of
the moon pool is 0.25 m. The resonant pumping mode in the
moon pool occurs at approximately Kd = 008 where d denotes the
draft. The computational results using a circular pressure patch are
compared with the corresponding results using a circular lid, which,
like the pressure patch, is treated as a separate body. The cylinder
and the lid are allowed to move in the heave mode only. Assuming
a constant pressure, the pressure patch absorbs the energy at the
rate shown in Eq. 29.

To compare the two methods, equivalent values of Bt and Ba
77

are obtained by converting one constant coefficient to another
using the relation Eq. 27. However, the converted coefficient is an
inverse quadratic in �, which is cumbersome to use. To simplify the
conversion, one converted value corresponding to �= 0078, which
is close to the resonance frequency, is used for all frequencies. It is
smaller than the exact value when �< 0078 and vice versa. (A
smaller Ba

77 means larger impedance in the vertical motion of the
free surface.) Simplified conversion is reasonable when the effects
of the external damping force are expected to be small except in
the vicinity of the resonance frequencies.

The free-surface elevation in the moon pool is shown in Fig. 6.
The computational results using a lid are very close to the corre-
sponding results using a pressure patch except for small differences
due to the simplified conversion.

In the next example, we consider two identical rectangular barges
fixed in infinite water depth. The length, beam, and draft of the
barge are 160 m, 30 m, and 15 m, respectively. Two barges are
separated by 8 m, as shown in Fig. 7. Two resonant free-surface
modes are considered. One mode is symmetric in x about the
midpoint of the gap and the other is antisymmetric. The moduli of

Fig. 6 Modulus of the free-surface elevation computed with three
different values of damping coefficients as well as without external
damping force. The coefficients for the heave mode of the lid are
Bt = 0005�, 001�, and 0015� in kg/s. The coefficients for the heave
mode of the cylinder are 2Bt . “lid” denotes the results obtained
using a lid, and “fsp” denotes those using a pressure patch. For the
latter, Ba

77 is obtained by Eq. 27 with �= 0078.

Fig. 7 Twin barges with a pressure patch on the free surface
between the barges

the free-surface elevation of the two resonant modes are shown in
Fig. 8 by the lines corresponding to Ba

77 = Ba
88 = �. Ba

77 and Ba
88

are damping coefficients for two pressure modes that are described
below.

Inferred from the resonant modes, a symmetric pressure mode
of the form, n74x5= cos43�x/L5, and an antisymmetric pressure
mode, n84x5 = sin42�x/L5, are considered in the computation.
Here L denotes the length of the barge. (j = 7 represents the
uniform pressure mode in this paper except in this example. Here it
denotes the nonuniform symmetric mode.) The ratio of the damping
coefficients of the two pressure modes is determined such that the
amplitudes of the two resonant modes are reduced at a similar rate.
Figure 8 shows the moduli of the free-surface elevations computed
with four different values of Ba

77 and Ba
88.

Other pressure modes that are not orthogonal to the resonant
modes may well be used. In this case, however, the damping
coefficients should be adjusted separately. Another practical method,
which may be useful for more complex geometry of the gap, is to
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Fig. 8 Modulus of the free-surface elevation along the x-axis on
the gap. Four results are shown corresponding to four different sets
of damping coefficients. Ba

77 = �, 10E9, 50E8, and 205E8 in kg/s,
and Ba

88 is 1.4 times Ba
77. The elevation decreases as Ba

ii decreases.
Ba
ii = � corresponds to the free-surface elevation with two barges

only, without considering the pressure modes.

divide the gap using multiple uniform pressure patches. In general,
the damping coefficient for each uniform pressure mode should be
determined separately. For the current example, three or six pressure
patches of equal length may be used for the symmetric mode, and
two or four patches may be used for the antisymmetric mode. The
same damping coefficient may be assumed on all patches in these
cases because of symmetry.

The free-surface elevation is given by:

�4x1 y5= −
i�

g
�4x1 y5+

6+Np
∑

j=7

�jnj4x1 y5 (31)

where �js are the amplitudes of the pressure modes on the patch to
which 4x1 y5 belongs. It is straightforward to obtain the elevation
on the patches with a uniform pressure where nj = 1.

CONCLUSIONS

We have extended the conventional integral equation to obtain
the radiation solutions because of oscillatory pressure on the free
surface directly. The computational results are validated by making
comparison with the existing indirect approach.

Though both approaches are applicable to the analysis of the
structures with internal air/water interfaces, the direct approach has
a few advantages as illustrated in the computational examples. As
shown in the analysis of the ACV, the number of required modes is
significantly smaller in the current approach. This is particularly so
when the area of the interface, compared to the incident wavelength,
becomes larger. As illustrated in the analysis of an oscillating water
column (OWC) that is relative small, the resonant behavior can
be described more accurately using the current approach. Also, it
is straightforward to obtain the parameters, such as the optimum
pressure and the capture width, from the hydrodynamic parameters
of the pressure mode. We have also shown that artificial damping

can be introduced on the free surface of a gap in a simpler manner
using oscillatory pressure.

The hydrodynamic analyses are performed using the panel pro-
gram WAMIT. The higher-order method is used in all computations,
as it is expected that the low-order method is not as efficient nor as
accurate in the vicinity of resonances that are considered in all
examples.
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APPENDIX

We consider a rectangular air chamber of length 2a and width
2b and extending between zl ≤ z≤ zh. The height of the chamber
is denoted by 2c = zh − zl. x = y = 0 coincides with the center of
the air chamber.

The motion of air is represented by the velocity potential:

<
{

ê4x5ei�t
}

where ê4x5 is governed by the Helmholtz equation:

ï 2ê+K2
aê = 0 (32)

Here Ka =�/c0 is the acoustic wave number, and c0 is the sound
velocity.

The air pressure on Si is:

P4x1 y1 zl5= −i�a�ê4x1 y1 zl5 (33)
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and it is the same as po in Eq. 5. On Sc , the velocity potential is
subject to the Neumann boundary condition:

ên = V · n (34)

where V4x5 is the velocity vector of a point on Sc and n denotes
the normal vector.

In accordance with Eq. 9, the potential is expanded in a form:

ê = i�

6+Np
∑

j=1

�jêj (35)

For j ≤ 6, the components in Eq. 35 are subject to the conditions:

êj n
=Nj on Sc and êj = 0 on Si (36)

and 7 ≤ j

êj n
= 0 on Sc and êj = −

�

�a

1
K
nj4x1 y5 on Si (37)

where Nj is provided in Eq. 23. The pressure is represented by a
complete set of orthogonal Fourier modes such that:

nj4x1 y5=

(

cosumx

sinumx

)(

cosvly
sin vly

)

(38)

where

um =
m�

2a
and vl =

l�

2b
(39)

and the integers m and l are 0 and even for the modes corresponding
to the cosine or odd for sine.

For brevity, we assume that the incident wave travels along the
x-axis and consider the components that are independent of y. The
potentials corresponding to three rigid body modes are derived in
the form:

ê1 =
4
�

�
∑

n=1

1
n

sin�nx sin�nz
′

�n cos�na

ê3 =
sinKaz

′

Ka cos 2Kac

ê5 = zlê1 +
16c
�2

�
∑

n=1

sn
n2

sin�nx sin�nz
′

�n cos�na

−
8a
�2

�
∑

n=1

sn
n2

sin�nx sin�nz
′

�n cos 2�nc
(40)

where n is odd and �n = n�/42a5, �n = n�/44c5, �n =
√

K2
a −�2

n,
�n =

√

K2
a −�2

n , sn = sin 4n�/25, and z′ = z− zl. For 7 ≤ j , the
appropriate potentials satisfying Eq. 37 are:

êj4x5= −
�

�a

1
K
nj4x1 y5

coswj42c− z′5

cos 2wjc
(41)

where wj =
√

K2
a − 4u2

m + v2
l 5.

The aerodynamic added mass and restoring force coefficients in
Eq. 23 take the forms:

Aa
11 = �a

16b
�

�
∑

n=1

1
n

1
�n

tan�na
�n

Aa
33 = �a4ab

tan 2Kac

Ka

Aa
51 = �a

16b
�

[

a
�
∑

n=1

sn
n

1
�2
n

+ zl

�
∑

n=1

1
n

1
�n

tan�na
�n

�
∑

n=1
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n

(

1
�2
n

−
1
�2
n

)

tan�na
�n

]

Aa
55 = �a

{

zlA
a
51 +

64bc
�2

[

a
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∑
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1
n2

1
�2
n

+ zl
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∑
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1
�n
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�n

�
∑

n=1

1
n2

(

1
�2
n

−
1
�2
n

)

tan�na
�n

]

+
32ab
�2

[

�
∑

n=1

1
n2

(

1
�2
n

−
1
�2
n

)

tan 2�nc

�n

+ 4zl + 2c5
�
∑

n=1

1
n2

1
�2
n

− zl

�
∑

n=1

1
n2

1
�2
n cos 2�nc

]}

(42)

and

Ca
1j = 4�gbsm

tan 2wjc

wj

Ca
37 = �gSi

1
cos 2Kac

Ca
5j = 4�gbsm

[

zl
tan 2wjc

wj

+
1

cos 2wjc

(

1

w2
j

−
1
u2
m

)

−
1

w2
j

]

Ca
jj = −�g

�

�a

g

�2
Ajwj tan 2wjc (43)

where n is odd, j ≥ 7, sm = sinuma for odd m, sm = 0 for even m,
Si = 4ab (the area of the interface), A7 = Si, and Aj = 2ab for
j > 7. These coefficients are symmetric. All other coeffeicients
are trivial because of the geometric symmetry and the use of the
modes in Eq, 38.

For small Ka, the leading order approximations of the coefficients,
with the error of O4K2

a5, are independent of � except Ca
jj , for j > 7,

which is proportional to 1/�2. In particular,

Aa
33 ≈ �aV 1 Ca

37 =Ca
73 ≈ �gSi and Ca

77 ≈ −�g
�

�a

g

c2
o

V (44)

where V denotes the mean volume of the air in the chamber.
Often Ca

77 is estimated by assuming an adiabatic process, pv� =

PV � , where � denotes the adiabatic index; p and v denote the
instantaneous pressure and volume, respectively; and P denotes the
static air pressure. In this case, Ca

77 is given by:

Ca
77 =

−�gV

�4Pa/�g +H5
(45)

where Pa is the atmospheric pressure and H is the submergence of
the interface.


