(*BOSS" Conference, Trondheim, Norway, June 1988)

THE COMPUTATION OF WAVE LOADS
ON LARGE OFFSHORE STRUCTURES

J. Nicholas Newman Department of Ocean Engineering USA
Paul D. Sclavounos Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

The reliable analysis of wave interactions with large offshore structures of complex form requires
2 robust and accurate numerical solution of the linearized radiation/diffraction problems. A new
panel program is described which has been developed for this purpose, based on the application
of Green's identity to obtain an integral equation for the velocity potential on the body surface.
Important features of the program are controlled accuracy, fast evaluation of the wave-source
potential, and an accelerated iterative solver which permits the use of large numbers of panels.
Tllustrative computations are presented for a TLP and a catamaran-barge configuration with 2
small gap between the two hulls. Possible future developments in this field are suggested, and
the validation of computer programs is emphasized.

1. INTRODUCTION

Following the pioneering development of ‘panel’ methods for aerodynamic flows by Hess and
Smith [1], several programs have been developed to analyze water-wave radiation and diffrac-
tion, using distributions of sources on the submerged body surface and solving 2 linear system
of equations for the unknown source strength on each panel. Early applications usad compu-
tationally intensive algorithms for the free-surface source potential, or ‘Green function’. This
cestricted both the number of panels used to discretize the structure and the number of separate
computations used to characterize the frequency response and dependence on geometric param-
eters. Moreover, it was not generally feasible to use 2 sufficiently large number of panels to
+est for numerical convergence. The last shortcoming was less apparent when ‘compact’ bodies
of simple geometrical form were studied, and when the validation of the programs was based
on experimental data, but more extensive computations and comparisons for practical offshore
structures have revealed substantial uncertainties.

An example is provided by the ISSC comparison of results from 17 different radiation/diffraction
programs for the TLP shown in Figure 1. The results of this comparison are surnmarized by
Eatock Taylor and Jeflerys (2], and the surge added mass is re-plotted in Figure 2. Most of
‘hese results are based on panel programs, using discretizations with a few hundred panels. A
substantial scatter exists even in the long-wavelength regime.

Also included in Figure 2 are our own more recent results for the same TLP, based on the

program WAMIT. The solid curve shows our principal results obtained with 1928 panels, using

forty periods to define the complicated frequency-dependence associated with wave interference
l




Figure 1 — Submerged surface of the ISSC TLP represented by 4096 panels.

between the TLP columns. To indicate the sensitivity to the number of panels, seven more
accurate computations are shown with 4048 panels, and less accurate results obtained with 512
panels are indicated by the broken curve. Collectively these three sets of data imply convergence
at a level 1-2% below the solid curve.

All of the results plotted in Figure 2 are based on the same linear potential-Gow model, which
is well accepted and unambiguous. The variations among different programs must therefors ha
sttributed to some combination of errors in the programs, or in their use. Various explanalious
have been offered including improper discretizations of the body, and inaccurate evaluzations
of the influence functions (integrals over each panel of the source potential and its normal
derivative). Assuming the correctness of our own extrapolated results, only four of the other
seventeen sets of data lie within 10% of this benchmark.

In the present paper we describe some [eatures of the three-dimensional free-surface panel pro-
gram, WAMIT {WaveAnalysisMIT), which has been developed in response to the perceived
need for more accurate and efficient programs in this field. Particularly important in this de
velopment are special algorithms and subroutines for the evaluation of the influence functions,
and a unique iterative solver [or the linear system of equations. Collectively these features make
it possible to analyze structures which are represented by thousands, rather than hundreds, of
panels, and to do =zo with controlled accuracy.

Preliminary results for idealized body shapes were presented at the [ast BOSS Conference [3],
including comparisons with benchmark computations derived from an independent curvilinear-
panel program. Subsequently, WAMIT has been developed for use with offshore structures of
practical form, and several opticns have been implemented to permit the evaluation of frst-
order hydrodynamic forces, body motions in waves, pressures on the body, pressures and/or
velocities in the Auid domain, and second-order drift forces. Several of these capabilities have
been illustrated for a six-column TLP [4] using up to 12,608 panels to demonstrate convergence,
and the results have been confirmed with 2 complementary time-domain panel program.

After reviewing the development of WAMIT results will be presented for a particularly difficult
configuration, consisting of two rectangular barges separated by a small gap. In Section T we
speculate on future developments in this field, associated with the use of parallel processors, and
in the concluding Section & special attention is given to the validation of computer programs.
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Figure 2 - Surge added mass of the ISSC TLP. The solid curve is evaluated by WAMIT using
1928 panels and 40 closely-spaced frequencies. The tick-mark on the ordinate indicates the
limiting value 41633 for a period of zero, derived from the time-domain analysis of Korsmeyer
[4] using the same discretization. Analogous results with 4096 panels are indicated by .ﬂ"c
symbols {x), and with 512 panels by the broken curve. The symbols {+) denote computations
from other programs as summarized by Eatock Taylor and Jefferys [2|. The results shown are
dimensional, as defined in [2].
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2. THE INTEGRAL EQUATIONS

The radiation and diffraction problems in the frequency domain correspond respectively to
forced motions of the structure in calm water, and to the interaction of a fixed structure with
incident regular waves, Both problems are subject to the Laplace equation in the fluid domain,
the linearized free-surface condition, the no-Aux condition through the bottom of the fiuid,

appropriate Neumann conditions on the mean position of the body wetted surface, and the
radiation condition at infnity.

We adopt the complex time factor ¢'~', which is assumed to apply hereaftes. The potential for
a unit source, in the absence of the body, defines the Green function &G which iz well known [5].
This fundamental solution is vsed with Green’s theorem to derive an integral equation for the
velocity potential on the body surface 5,

1w¢{x]+ﬂ; ¢{f}§% df=[[s V{§)G dg, (1)

where the normal velocity V() is prescribed on 5.
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In the diffraction problem we define ¢ = 95 = &; + 25 to be the total velocity potential, where
#; is the specified incident-wave and ¢s the scattered potential. The boundary condition is
dép /8n =0 on S. The integral equation (1) can be applied directly to @5, with the result

g deb
275 (x) 4-[-/; és{f}adf = jj; ﬁGdf (2)

Alternatively, if Green’s theorem is applied to ¢; on the interior of §, with the feld point x on
the same surface, it follows that

~2etix) + [[ 4 (€) 5 d6 = i g%-:cds (3

(The interior space is appropriate in thi= application since ¢; is harmonic throughout the half-
space beneath the plane of the fres surface, whereas this potential does not satisfy the radiation
condition in the far-Geld. The only formal change in the integral equation is in the direction of
the normal vector, which is defined consistently to be positive out of the fiuid domain and into
the body.) Equations (2) and (3) can be combined, and after invoking the boundary condition
on the body surface the simpler integral equation

2090 (x) + [ f ds{f}% d€ = 4, (x) (4)

is derived for the diffraction potential.

In WAMIT the integral equations (1) and (4) are solved for the velocity potentials of the
radiation and diffraction problems, respectively. This approach is somewhat different from the
more common source-formulation, inwhich an integral equation is solved for the unknown source
strength and the velocity potential is obtained subsequently by another integration.

Before discussing the numerical analysis it should be noted that the solutions of these integral
equations are not unique at a set of ‘irregular frequencies’. This has been 2 troublesome is-
sue in the development of panel programs, and significant errors have been observed in some
cases. Following analogous work in acoustics [6], a method has been developed [7,8,9] to remove
the error due to all irregular frequencies. This method is based on the solution of a modified
integral equation for the velocity potential over the body surface. A discussion of the manifes-
tation, importance and removal of irregular-frequency effects is given in [4]. For most offshore
structures the irregular frequencies do not appear to be of practical importance, particularly
when the formulation (1-4) is used rather than the alternative of sclving for an unknown source
distribution.

The integral equations (1) and (4) are discretized by subdividing 5 into 2n ensemble of N panels
s;, assuming a constant potential ¢; and normal velocity V; on each panel, and enforcing the
equation at the panel centroids. For the radiation potentials it follows that

N G
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A similar equation follows from (4) for the diffraction potential. The result is a system of N
complex linear algabraic equations with the same number of unknowns.
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Each panel s; is defined by the offsets of its four vertices. A triangle is obtained in the special
case of two coalescent vertices. When the four vertices of a panel are not co-planar, it is
customary to define a plane which in some sense is a best fit to these veriices; we exploit the
geometric property that the midpoints of the four sides of any guadrilateral lie in the same
plane, The projection of the four vertices onto this plane defines the plane panel used for the
discrete analysis. (The plane panel defined in this manner is identical to that which is obtained
by Hess and Smith [1] following a slightly different procedure.}

In computations based on this formulation, the two principal tasks are: {a) the evaluation of the
hydrodynamic influence coefficients for all panels, which involves O(¥?) evaluations of the Green
function; and (b) the solution of a dense complex linear system of order IV, which involves O(N?)
fAoating-point operations if carried out by Gauss reduction and O(N7?) eperations if carried out
by an iterative method. These tasks are discussed in Sections 3-4.

3. SET-UP OF THE MATRIX

The matrix coeficients are constructed by integration of the Green function and its normal
derivative over each panel. For this purpose the Green function is decomposed into Rankine
singularities (the basic 1/R singularity, its image above the free surface and, in finite depth,
its image below the bottom of the fuid domain), 2 logarithmic singularity which is significant
if the source and ficld point are close to each other and to the free surface, and the boundc:
remainder required to satisfy the free-surface boundary condition. Special attention is given to
each of these components.

For the Rankine infuence coefficients, the analytical procedure of Hess and Smith [1] has been
extended [10] to provide robust algorithms, for all possible positions of the fleld point relative to
the panel, with a uniform tolerance of six decimals accuracy, When the field point is sufficiently
far from the panel a fourth-order multipole 2pproximation is employed.

Analogous analytical techniques have been derived for the logarithmic singularity, as summarized
in the Appendix. Our experience has shown that the analytic integration of the logarithmic
singularity may be significant when studying run-up, or other features of the solution near the
intersection of the body and the fres surface.

The above components, which are independent of frequency, may be evaluated once and stored
for subsequent use to minimize their computational burden.

Efficient algorithms for the evaluation of the free-surface component of the Green function
have been developed [11] and coded in the subroutine FINGREEN. Numerical experiments
confirm that a single-node centroid integration provides an accuracy which is consistent with the
discretization error introduced by the approximation of the geometry and the velocity potential.
The single-node guadrature formula allows the use of the symmetry properties of the Green
function to evaluate the two matrix coefficients corresponding to a pair of panels with one call
to FINGREEN, thus requiring N?/2 total calls for a body with no planes of symmetry.

For bodies with one or two planes of symmetry, the input panels may be distributed over half
or a quarter of the body, and both the number of evaluations of the Green function and the
dimension of the linear system are reduced by factors of two or four, respectively.



4. SOLUTION OF THE LINEAR SYSTEM

Direct Gauss reduction is the conventional methed of solution for the complex, dense linear
system (5), and its counterpart in the difiraction problem. Unless special steps are taken to
implement an out-of-core solver, this method of solution is sensitive to the RAM capacity of
the machine being used, A more fundamental difficulty is that this solution method requires a
computational effort proportional to N * and it is not feasible to use panel numbers substantially
greater than 1000. On the other hand, an zdvantage of the direct method of solution is that
the effort to reduce the solution matrix is practically independent of the number of right-hand
side vectors, i.e. the number of modes analyzed in the radiation problem and the number of
wave headings in the diffraction problem. Version 1 of WAMIT is based on this approach with
a conventional Gauss factorization and back-substitution.

To overcome the O[N?) computational burden of the direct method of solution, an iterative
solver has been developed and implemented in Version 2 of WAMIT. This solution technique is
based on the Gauss-Siedel method, accelerated by a conjugate-gradient algorithm. The conver-
gence test is based on 2 tolerance of six decimals in the residual-error norm. For various body
geometries including four- and six-column TLP's, convergence generally is achieved in 10-15
iterations. Larger numbers of iterations have been observed in special cases where the matrix is
poorly conditioned, due either to proximity to an irregular frequency, or to a physical resonance
which is highly-tuned. An example of the latter type is discussed in Section 6.

The principal advantage of the iterative solution is that the computational efflort is proportional
to N?. Moreover, the matrix elements can be stored out-of-core in a manner which permits fast
sequential transfer. For this reason the iterative solver is especially suitable for implementation
on small computer systems such as PC’s. The results presented in this paper are based entirely
on the iterative method of solution, and most of these results have in fact been obtained on a
PC-AT microcomputer system.

To compare the efficiency of the direct and iterative solvers, we shall consider a typical run
invelving several frequencies or wave periods. In this context one can ignore the time required
to evaluate the panel geometric parameters and Rankine matrix coefficients, which are stored
for subsequent use at each frequency. The only significant computational burden in the solution
is then associated with (a) the evaluations of the free-surface Green function (and its gradient),
and (b) the solution of the linear system for each specified radiation or diffraction mode. Table 1
indicates the approximate time required for each of these tasks on a VAX 11-750 minicomputer.
The performance of larger minicomputer systems and mainframes is substantially faster, but the
relative burden of each task should be similar on all serial computers. On vector machines such
as the Cray, where it is feasible to vectorize the direct and iterative solvers, the computational
burden of task (b) is reduced relative to (a) by an order of magnitude.

When Gauss reduction is used, the relative burden between the set-up and solution depends on
the number of panels. The first two rows in Table 1 indicate that these two tasks require ap-
proximately equal time if the total number of panels is of order 100 with no planes of symmetry,
400 with one plane of symmetry, and 1600 with two planes of symmetry. Thus the number of
planes of symmetry affects this comparison significantly.

When the iterative solver is used, both tasks are quadratic in N and their relative magnitudes are
roughly the same. However, this comparison is for infinite depth and based on a serial computing
system. Finite depth increases the burden of the Green function evaluation by a factor of 2-4,
and vectorized svaluation of the solver may reduce the time for task (b) substantially. Thus the
evaluation of the Green function remains the most critical aspect of the overall problem.
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Planes of Symmetry: 0 | 2

Set-up (Green function) 1.2 N? 0.6 N*? 0.3 N?
Direct solution 0.0128 N* 0.0016 N* 0.0002 N?
Tterative (1 mode) 0.96 N*? 0.24 N? 0.06 N?
Tterative (6 modes) 5.76 N? 1.44 N7 0.36 N?

Table | - Appreximate CPU times in milliseconds for set-up and solution of the linear system on
a VAX 11/750 system. N = total number of panels. Times for the Green function evaluation
are for infinite Auid depth. Times for the direct solution do not include overhead when the
number of unknowns is large in relation to the available RAM.

5. CONVERGENCE AND VALIDATION

For a boundary surface with continuous curvature, the combination of plane panels with a
constant value of the velocity potential on each panel involves discretization errors of the same
order. This ‘optimal’ combination is also ‘consistent’, because the error can be shown to vanish in
the limit N — oo. However, these properties are not sufficient to ensure that the discrete solution
will converge to its continuous limit. For example, it is possible that inaccurate integrations
of the Rankine singularity for neighboring panels will generate inconsistent approximations of
the influence coeFcients, leading to a solution of (3) which with increasing N may converge
to the wrong answer. For this reason a conservative tolerance of six decimals has been used
in WAMIT, not only for the panel integration of the Rankine singularities, but also in the
FINGREEN subroutine for the free-surface source potential.

Rational estimates of the rate of convergence are not available. For a variety of structures,
evaluations of the hydrodynamic forces and free-surface elevations with WAMIT indicate that
convergence is achieved with increasing numbers of panels. For bodies with sharp corners we find
that the rate of convergence is affected significantly by the spacing of panels near the corners.

Confidence that the converged solution is in fact correct requires several validation tests. The
first tests of WAMIT were based on studies of simple body shapes including spheres, spheroids,
and axisymmetric cylinders [3|. Convergence tesis and extrapolated results were made, together
with comparisons with benchmarks from independent programs and other works. Validation
for more complicated structures has been performed subsequently, notably in the analysis of
a six-column TLP [4]. The latter work includes convergence tests with up to 12,608 panels,
and comparison of the (frequency-domain) added-mass and damping coefficients with Fourier
transforms of the time-domain impulse-response function for the same structure.

6. COMPUTATCNAL RESULTS FOR A CATAMARAN BARGE

To illustrate some of the results from WAMIT in a relatively difficult application, we consider
two rectangular barges arranged in a catamaran configuration and separated by 2 small gap, s
shown in Figure 3. The length, beam and draft of each barge are L = 30m, B = 20m, T = 10m,
respectively, and the gap width is 4m.

This type of configuration is notable from the standpoint of the resonant motion which occursin
the gap when the product of the wavenumber and draft is near unity [12]. Most numerical studies
of this phenomenon are two-dimensional (cf. Marthinsen and Vinje [13}, who also consider the
effects of viscosity and nonlinearity near the resonant frequency). Analogous problems arise in
the analysis of a monohull with an internal ‘moon pool’.
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Figure 3 — Catamaran barge discretized with 2 total of 2560 panels. The dimensions of each
barge are L = 50m length, B = 20m beam, T = 10m draft, and the gap is 4m wide.

We restrict our discussion here to forced heave and pitch motions in calm water, since thasa
separate rmodes illustrate the gap resonance more clearly than when the motions are superposed
with the diffraction problem. In the three-dimensional analysis two discretizations are employed,
with the total number of panels on both barges equal to 640 and 2580 respectively. The latter
discretization is illustrated in Figure 3. The discretizations used here are based on ‘cosine’
distributions, to provide a finer spacing near the corners and also near the free surface. In the
Figures which follow, the curves are based on the coarse discretization, and discrete points are
used to denote the more accurate results with smaller panels.

Befare considering the three-dimensional analysis it is instructive lo present results from the
analogous problem in two dimensions. Figure 4 shows the strip-theery approximation for the
added mass and damping, obtained from the two-dimensional program NIIRID, a potential-
based integral-equation program analogous to WAMIT. The resonant gap oscillation at a period
of 7.7 seconds is pronounced in this Figure. A small effect also is apparent from the first irregular
frequency at 4.8 seconds. In the results shown by the solid curve, the body section is represented
by a total of 32 segments (16 for each rectangular hull). More accurate results with a total of
64 segments are shown to indicate the convergence. These twa representations are identical at
each section to the corresponding discretizations used in three dimensions.

Figure 5 shows three-dimensional results from WAMIT for the added mass and damping. The
coarse discretization appears to be sufficiently accurate for most practical purposes. As in the
analogous results for an axisymmetric cylinder [4], the bandwidth of the irregular-frequency
effect is reduced by increasing the number of panels.

In Figure 6 the fressurface elevation is shown at three longitudinal positions within the gap
including the center (z = 0}, half way to the ends (z = £L/4), and at the ends (z = £L/2).
(From symmetry the free-surface elevation associated with the pitch mode is zero at the center.)
At most periods the elevation is 2 maximum in the middle, decreasing toward the ends of the
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Figure 4 — Strip-theory approximation to the added mass and damping of the catamaran barge.
The solid curves are based on discretization with 32 segments on the cross-section of the two
hulls, and the marks (+, x) are with 64 segmenis. The results are nondimensionalized based
on the length scale L/2, frequency, and the Buid density.

gap. The resonance is pronounced, with a predicted free-surface elevation at the center 50 times
the heave amplitude. The effects of both the gap resonance and the irregular frequencies are
magnified here, by comparison to the integrated coefficients in Figure 3.

Comparison of Figures 4-5 reveals that the magnitude of the gap resonance is substantially
reduced by three-dimensional effects, and the resonant periods are shifted downward. Thus it
is not appropriate to analyze this type of configuration with a strip-theory approach. We shall
discuss the resonant periods further after first analyzing the irregular frequencies.

The irregular frequencies for multiple floating bodies can be predicted from the eigensolutions of
the free-surface problem in the interior of each separate body [4]. The values for a rectangular
barge are easily evaluated by separation of variables. Since the solutions of the heave and
piteh radiation problems are symmetric and antisymmetric, respectively, the corresponding
eigensolutions are

i Z:{k,z}:ua[k,y}sinh{kl[z +T)) (6)

Here (k.,k,) denote the components of the wavenumber with scalar length k, T is the draft,
and the origin is at the center of the rectangular waterplane. Antisymmetric modes in y, which
correspend to relatively high irregular frequencies beyond the range shown in Figures 4-6, are
ignored in this discussion.

The discrete values of (k.,k,) are determined by requiring the potentials (6) to vanish on
y=+B/2 and z = £L/2, and the irregular frequencies follow from the free-surface condition,
K=uw/fg= kcoth(kT). For the two-dimensional case shown in Figure 4, with k, = 0, the
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lowest irregular frequency for the indicated dimensions corresponds to k = k, = /B, and thus
to a period of 4.85 seconds. In three dimensions the same value applies for k,, and the lowest
irregular frequency for heave occurs when k. = =/L, with the period 4.79 seconds. For pitch
the corresponding values are k, = 2r/L and 4.85 seconds. These periods are consistent with
the computational results in Figures 4-6.

A similar analysis applies to the gap resonances, but with important distinctions. Unlike the
irregular frequencies, which are present only in the mathematical solution of the integral equa-
tion, resonant motions in the gap are physically real, although generally exaggerated by the
assumptions of linear potential theory. The other important difference is that the resonant
modes in the gap must satisfy homogeneous Neumann boundary conditions on the sides, rather
than Dirichlet conditions. Two-dimensional standing-waves with k, = 0 are the mest important
modes when the gap width is small.

The common feature of the irregular-frequency and resonant-gap modes is that homogeneous

Dirichlet conditions apply on the boundaries z = =T and z = £L/2, under the assumption
that the gap width is small, To see this analogy we recall and generalize the two-dimensional
analysis [12], based on the method of matc®  asymptotic expansions. Three regions of the
fAow are significant including () the interic 1e gap, (b) an intermediate domain near the
entrance to the gap, and (¢} the exterior fic ociated with the remainder of the body and
the free surface. Rescnance is possible if the a nontrivial solution in the gap with zero (or

asymptotically small) value in the exterior re,..a. For example, the purely vertical gap motion
é = Kz + 1 satisfies the free-surface condition, and vanishes when z = -T if KT = 1. Since
matching of the (narrow) gap fow to the exterior domain is carried out within 2 small distance
of the latter point, it is possible in the asymptotic analysis to match a large gap motion to a
relatively small exterior fow when KT = 1.

For T =10m this simplified analysis implies resonance at 6.3 seconds, but the added mass of the
Auid in the intermediate domain effectively increases the draft, by an amount of the same order
as the gap width. If the conformal-mapping analysis of Marthinsen and Vinje [13] is applied to
the present geometry, the effective draft is increased by 3.0m to 2 total of 13.0m; on this basis
the resonant period is increased to 7.2 seconds. The resonance in Figure 4 at 7.7 seconds implies
a somewhat larger effective draft of 14.7m, which may be due to the fact that the ratio of the
draft to the gap width is not sufficiently large to make the simplified analysis accurate.

Similar arguments 2pply to the three-dimensional problem, based on the solutions (6) with
k, = 0, and with the draft increased to account for the added-mass effect. (A similar effective
lengthening of the gap at the ends z = £L/2 has little effect on the resonant periods.) Using
the effective draft of 14.7m, we find the first three symmetric modes for heave to ba at periods of
7.3, 5.7, and 4.5 seconds. The corresponding antisymmetric pitch modes are at 6.5, 5.0, and 4.1
seconds. The first two periods for each mode are apparent in Figure 5. The shorter periods are
obscured within the band of irregular frequencies. Only the first resonant mode hasa significant
effect on the integrated heave force or pitch moment.

7. FUTURE PROSPECTS - VECTORIZATION AND PARALLEL PROCESSING

Future developments of the panel method can be anticipated to take advantage of present
and future computing systems, particulacly vector supercomputers and parallel processors. If
the iterative method of solution is employed, the balance between the set-up and solution is
independent of the number of panels, and our principal concern is to increase the computational
speed of setting up the influence coefficients.



The vectorization of FINGREEN has been considered for both the finite- and infinite-depth
cases, which must be considered separately in this context. Some possibilities exist in this
direction, which could substantially reduce the computing time on specific systems such as the
Cray, but significant programming effort and algorithm development is required to approach
full vectorization.

The alternative of parallel processing appears more attractive, since it does not require sub-
stantial re-programming, and the same parallelism can be exploited in both the Rankine and
free-surface elements. The conversion of 2 sequential to a parallel algorithm for implementation
on a system with a large number of processors aims at achieving the highest degree of concur-
rency during the computation. On a system with M processors, the maximum possible speed-up
of a computational task is a factor of M relative to the effort on a single processor. In practice,
the speed-up is eM, where ¢ < 1 because of the inter-processor communication overhead which
depends on the architecture of the parallel processor and the algorithm used for the solution of
the problem at hand.

In the water-wave radiation/diffraction problem efficient algorithms for the set-up of the influ-
ence matrix on parallel processors may be similar to algorithms suggested for the treatment of
the gravitational attraction of a large number of bodies [14]. High efficiencies ¢ can be achieved
on parallel processors with architectures based on shared or distributed memory, if the pro-
cessors are connected in a ring topology which permits each node to communicate with the
two adjacent neighbors. Partitioning the evaluation of matrix elements among the available M
processors, it follows that

£l —— —— {Tj

where ¢, - is the time required for communication between two processors and ¢,,.; the tinc
to evaluate the influence coefficient. The computational burden of the influence coefficients
implies that ¢..... << {,,., and if the number of panels ¥ is comparable to or greater than
the number of processors M a high efficiency can be achieved in the set-up of the matrix.

8. CONCLUSIONS

We have shown that it is possible to analyze wave effects on large offshore structures with a
high degree of accuracy, efficiency, and confidence. Particularly important in this respect is
the ability to make computations for practical structures with a sufficiently large number of
panels to demonstrate numerical convergence., This by itself doss not guarantee correctness of
the program, howevear.

The validation of computer programs is a topic of universal importance, which lately has received
attention in the ITTC and other forums. In addition to the verification of numerical conver-
gence, careful and systematic validation requires a variety of other tests including comparison
with recognized analytic results, and with independent computations for more complicated ap-
plications where no analytic results exist.

Tests also should be made in special cases where the theory provides redundant checks, such as
the symmetry of cross<oupling coefficients or the use of the Haskind relations to compare with
direct evaluation of the exciting forces. These tests are simple to implement, and provide good
estimates of the maximum accuracy to be expected, but they are not sufficient by themselves to
validate a program. Also useful are qualitative comparisons with asymptotic approximations, as
in our analysis of the small-gap problem in Section 6. Finally, the program should be tested with
special attention in regimes where it may not be reliable, such as the vicinity of the irregular
frequencies.



Notably absent from our discussion is validation based on comparisons with experimental data.
It is vitally important to validate any theory by comparison to experiments or full-scale mea-
surements, so that the limitations and assumptions are defined to the maximum extent possible.
But programs based on unambiguous and well established theories must be held to a higher level
of accuracy than can be achieved in most experiments.

To be more specific in the context of wave loads on offshore structures, the best experimental
data probably are subject to uncertainties of a few percent, due to the definition and measure
ment of the wave field. In compating these measurements with thecretical predictions, additional
uncertainties are introduced of the same aor larger magnitude, especially due to the role of viscos-
ity. Thus it is impossible to validate a computer program on this basis, with confidence bounds
smaller than a few percent.

Since offshore structures are intended for practical service in conditions which depart from the
ideal theoretical description, one might argue that it is unnecessary to achieve a high degree
of accuracy or confidence in the numerical predictions. However, this argument averlooks the
inevitable use of programs in new applications which differ from these where experimental
knowledge exists at the time of program development. Ensuring that the program itself is
an accurate representation of the theory, to a rationally prescribed tolerance, is a necessary
condition for practical use on a variety of present and future problems.

Some guidelines are available from our results to indicate the relationship between the number of
panels used to discretize a structure and the resulting accuracy of the hydrodynamic parameters.
With careful attention to the discretization, including continuous reduction in the panel width
near sharp corners, it appears that reasonable levels of engineering accuracy can be achieved
for the structures we have considered, with less than 1000 panels. Finer discretizations are
required in special circumstances, for example to analyze 2 smaller gap width, local variztions
of the pressure distribution on a structure, or a more complicated geometrical configuration.
Generalizations are dangerous, however, and allowances rnust be made for less systematic dis-
cretizations. Routine use of convergence tests is strongly recommended, with substantially-finer
discretizations employed at selected periods to confirm the accuracy of the results.

From the hydrodynamic standpoint, our results for the catamaran-barge configuration reveal the
importance of three-dimensional effects on the resonant gap motions. Not only are the resonant
amplitudes reduced, but the periods are shifted significantly below the values predicted by
strip theory. The difference between the results for heave and pitch, shown in Figure 5, is an
example of the importance of three-dimensional effects and the limitations of strip theory near
the resonant period for each mode.

In this paper we have focussed primarily on the first-order effects of the radiation wave forces,
and on the free-surface elevation. Various other quantities can be evaluated with the same
confidence by the present version of WAMIT, including diffraction effects, exciting forces, body
motions, local pressures on the body, the pressure and velocity at feld points in the fluid, and
the steady horizontal drift forces and yaw moment. An important task which remains is the
implementation of a complete second-order solution, including both the sum- and difference
frequency forces acting on a body in 2 spectrum of waves. This extension will be facilitated by

the robust and efficient features of the Brst-order solution.
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APPENDIX - INTEGRALS OF THE LOGARITHMIC SINGULARITY

If the positions of the source and field point are close to each other and to the free surface, a
logarithmic singularity is encountered in the free-surface Green function, anzlogous to the more
singular component inversely proportional to the distance from the Seld point to the image of
the source point above the free surface. In this Appendix we derive expressions for the analytic
integration of this logarithmic singularity, and its normal derivative, over a quadrilateral panel.
The essential tasks are to evaluate integrals of the form

sz[! Ydédn (A

p=[ j; %‘fdedn (42)

where the integrals are over the panel surface. The logarithmic singulanity ¢ in the free-surface
source potential is defined by ([11], equation 5),

¥ =logr(l + cosd) (A.3)

and

r=v{z-€F +y—n)2+(z-¢)? (A4)

Here the Cartesian coordinates (z,y,z) and (£,7,¢) of the image source and feld point, respec-
tively, are defined with respect to the panel coordinates, with z = 0 the plane of the panel, and
8 is the angle between the positive z-axis (normal to the panel) and the (upward) vertical vector
k perpendicular to the plane of the free surface.

The integrals (A.1) and (A.2) can be svaluated in closed form, with the help of some vector
analysis. For this purpose we consider a pyramid with the quadrilateral panel as its base and the
field point as its vertex. The four sides of this pyramid are triangles bounded by the respective
sides of the panel and the rays from the panel vertices to the field point. In the following analysis
j]'r, dS denotes integration over each of the four triangular sides T, with the index1 = (1,2,3,4).
The relations which follow take advantage of the fact that the logarithmic singularity (A.3)isa
harmonic function, except at the singular point r =0.

Applying Green's theorem to the harmonic functions ¥ and ¢ gives the relation

f f (i e+ 3] B0 (4.5)

i=1

where the subscript n denotes normal differentiation and

L= fj: (¥6. —c¥a)dS (A.5)




Since ¢ = 0 on the panel, the integral in (A.5) is equal to (A.1}, and L may be evaluated from
the alternative expression

L=- i L; (A.7)

=l

Similarly, from the divergence theorem,

D= ﬂ; Y dédn = —‘:D; (A.8)

=l

where

D, = [ Vods (4.9)
T

In the following analysis of the integrals defined by (A.6) and (A.9), it is sufficient to consider
only one triangle, and to use the subscripts 1 and 2 to denote the two corresponding vertices of
the panel,

Cartesian coordinates (u,v,w) and corresponding polar coordinates (p, &, w) are defined with
w = 0 in the plane of the triangle, w > 0 for the interior domain of the pyramid, and with the
origin at the vertex. The triangle is bounded by the rays a; and oy, and by the cpposite side.
The latter is a straight line in the (u,v) plane between the points (u,,v,) and (u;,v;). The
equation of this straight line can be defined as Au+ Bv = 1, or equivalently in polar coordinates
by

1 1
= = 10
pla) Acosa+ Basina Ccosf (A0
where the parameters in this equation are defined as follows:
A+iB=Cet = + v+ il - ) (A.11)
(81vz —uym)
f=a-§ (A.12)

It is helpful to rotate the (u,v) plane about the w-axis so that the vertical vector k is in the (u, w)
plane, and to define the angle i between k and the w-axis. It follows that cos# = —cosasing
and, in the plane of the triangle,

¥(p, &,0) = log p(1 — cos asinp) {A.13)




The normal derivative in the same plane is

—cos

Yo = p(1 — cos asin ) (4.14)

After making these substitutions in {A.9) and evaluating the resulting integrals with respect to
p and « in that order, it follows that

1
T A?+ Bicosiy

: . 1- i 3
+ Asinpeosptan”’ (M) + Beospsinalog (ﬂ‘ﬂ)]
0 —cos CQG,H 1

Dy

[—- C cos i log(tan § + sec )

(A.15)

Here the subscript and superscript and the last bracket denote evaluations at the corresponding
limits &; and e, of the last integration. [The corresponding values of 8 follow from (A.12)].

The evaluation of (A.6) is similar, with the final result

L, = —-%zﬂ,—[l + coadcot ytan p)

4 - a
1cosy 3 5 COS (o SIn o 1—-‘::‘;9,:::31115‘3\'1
—_— - tand = tan — ek 1

20T ‘Et e (sin:p—cnsc:) 20p UE( Teoe 7

(A.186)

where the angle +, the elevation of the triangle above the quadrilateral plane, is evaluated in
the interval (0, ).
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