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Abstract

Wave generation and absorption are analyzed in a closed basin, within the framework of linear
potential theory. Wavemakers on the sides of the basin are used for both generating and
absorbing the waves. Relations are derived governing the control of the absorbers, to reduce
or eliminate reflected waves from the walls of the basin. These relations are tested by showing
numerical examples of wave systems in square and circular basins, first without a body in
the basin and then with a floating hemisphere. Computations of the added mass, damping,
and exciting forces on the hemisphere are presented to indicate the effectiveness of the wave
absorbers. Two-dimensional results are shown in the time domain to illustrate some of the
transient effects associated with different types of absorber controls.

1 Introduction

Experimental wave basins are used to measure wave effects on various types of structures and
vessels, including models of ships, offshore platforms, and other bodies. The usual objective
is to simulate the open-water environment where the free surface is unbounded, except by the
body (or by multiple bodies). In order to achieve this objective it is necessary to eliminate or
minimize hydrodynamic effects associated with the finite dimensions of the basin. Wall effects
which are not related directly to waves are negligible if the basin is sufficiently large relative
to the body length scale. However the effects associated with wave reflection from the walls
will persist regardless of the size of the basin. Thus it is essential to both generate and absorb
waves in a controlled manner, to simulate the open-water conditions.

Square or rectangular wave basins are usually equipped with banks of wavemakers on one or
two sides. Beaches are used on the opposite sides to avoid or minimize reflected waves. Most
beaches consist of sloping porous surfaces which absorb the wave energy through a combination
of viscous dissipation and breaking. Partial reflection from beaches is unavoidable. In some
cases it is necessary to limit the time of an experiment so that the reflected waves do not affect
the test area of the basin.

As an alternative to passive beaches, wavemakers with suitable controls can be used as
absorbers [1,2,3]. We shall refer here to ‘wavemakers’ as devices which can be used either to
generate or absorb waves, or to perform both functions simultaneously. Absorbing wavemakers
have several advantages relative to conventional beaches. At least in linear theory, low or
zero reflection can be achieved, and less space is required in the experimental domain of the
basin. Another advantage is that waves which are reflected back toward the generators can
be absorbed. Absorbing wavemakers can also be used to reduce the time required for residual
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wave attenuation between experimental runs. In addition to their use in physical wavetanks,
absorbing wavemakers are also used in numerical wavetanks [4,5].

The linear analysis of wavemakers and absorber control systems is relatively straightfor-
ward in two dimensions, but the situation is more complicated if the wave motion is three-
dimensional. In order to generate and absorb plane waves at oblique angles it is necessary to
use a large number of wavemaker elements with small widths compared to the wavelength [6].
A more fundamental problem is to control the absorbers in an effective manner for oblique or
multi-directional waves.

Wavemakers can be analyzed with Havelock’s theory [7], which applies to a semi-infinite
fluid domain. In the case of generators a radiation condition is imposed, and each wavemaker
radiates waves which propagate to infinity. For absorbers the same theory applies, but with
the waves moving in the opposite direction. As in the case of a floating body in an infinite
fluid, the hydrodynamic pressure force acting on each element includes both added-mass and
damping components. This approach is intuitively logical if the horizontal scale of the basin is
large compared to the wavelength, and if reflections are ignored.

It is more rational to consider the basin as a finite domain, but this changes the linear
inviscid theory in a fundamental manner. Waves are reflected on the basin walls, and there is
no energy radiation. Considering each wavemaker mode separately, and assuming steady-state
harmonic time dependence, standing waves are generated and the fluid velocity throughout
the basin oscillates with the same phase. There is no wave damping, and the pressure force
acting on each wavemaker element can be expressed completely in terms of an added-mass
matrix. Nevertheless progressive waves can be generated, with ‘effective’ damping and energy
absorption, by combining the motions of different wavemaker elements with appropriate phase
differences.

In this paper linear theory is used to study the performance of wavemakers in basins. We
restrict our attention to basins with a square or circular planform, and to hinged wavemakers
with vertical surfaces which rotate about a submerged horizontal axis. Similar results can be
expected for other planforms and wavemakers.

The first problem considered is that of generating and absorbing a plane progressive wave
system without the presence of a body. The theoretical framework is outlined in Section
2. Wavemakers and conditions for optimizing absorbers are considered for two–dimensional
basins in Section 3, for oblique waves in Section 4, and for three-dimensional basins in Section
5. The extension to include a body is considered in Section 6, where it is shown that close
approximations to the open-water forces on a floating body can be achieved with suitable
control of the absorbers. In Section 7 two-dimensional wavemakers are analyzed in the time
domain, to compare the transient effects of different absorber strategies. Section 8 gives a brief
description of the computational methods, and Section 9 includes discussion and conclusions.

2 Theoretical Analysis

Cartesian coordinates x, y, z are used, with z = 0 the plane of the equilibrium free surface and
the +z-axis directed upwards. The fluid depth h is constant, with the bottom at z = −h. The
sides of the basin are assumed to be vertical, and covered by an array of N wavemakers. The
fluid domain is enclosed by the boundary surface S including the wavemakers and bottom of
the basin, and by the free surface. The normal vector n is directed out of the fluid domain on
S. The complex time-factor eiωt is assumed throughout, except in Section 7.

If the j’th wavemaker oscillates with complex amplitude ξj , the velocity potential can be
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defined as

φ = iω
N∑

j=1

ξjφj . (1)

Here φj is the radiation potential for each wavemaker, satisfying the boundary condition

∂φj

∂n
= nj (2)

on the submerged surface Sj of the j−th wavemaker, where nj is the normal displacement when
ξj = 1. If the wavemakers are hinged about the bottom,

nj =
z + h

h
on Sj . (3)

The normal velocity ∂φj/∂n = 0 on the other wavemakers, and on the bottom of the basin. It
is convenient to define nj = 0 everywhere on S except on Sj , so that (2) applies everywhere on
S. The normal displacement nj is real, with the same phase at all points on the wavemaker.
(More generally, in cases where the motion of a wavemaker is complex, it can be decomposed
into two real modes.)

The linear free-surface condition on z = 0 is

ω2φj − g
∂φj

∂z
= 0, (4)

where g is the gravitational acceleration.
The generalized pressure force acting on the i’th wavemaker is

Fi =
∫ ∫

S
pnidS = −iρω

∫ ∫

S
φnidS = ρω2

N∑

j=1

ξj

∫ ∫

S
φjnidS (5)

where the linear form of Bernoulli’s equation is used to evaluate the pressure p, ρ is the fluid
density, and there is no contribution from the hydrostatic pressure since the wavemaker’s normal
displacement is horizontal. In the present case Fi is equivalent to the moment about the hinge
axis.

Since the fluid domain is bounded and the only inhomogeneous boundary condition is real,
it follows that φj is real and the generalized pressure force acting on the i’th element can be
expressed in the form

Fi = ω2
N∑

j=1

ξjAij, (6)

where

Aij = ρ
∫ ∫

S
niφjdS (7)

is the added-mass matrix.
We shall assume that the principal objective is to generate a progressive ‘incident’ wave

system of amplitude A, represented by the potential

φI =
igA

ω

cosh k0(z + h)

cosh k0h
e−ik0(x cosβ+y sinβ), (8)

where β is the angle of propagation relative to the +x-axis. The wavenumber k0 is the positive
real root of the dispersion relation

ω2

g
= k tanh kh. (9)
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The wave system (8) can be produced in a basin with no obstructing bodies if the normal
velocity everywhere on the walls of the basin is equal to ∂φI/∂n. This ideal condition can be
approximated if the wavemaker width is sufficiently small relative to the wavelength 2π/k0, and
the amplitude of each element is defined by

ξj = (nx cos β + ny sinβ) e−ik0(x cosβ+y sin β). (10)

Here (xj, yj) are the horizontal coordinates of the wavemaker centroid and (nx, ny) are the
components of the normal vector.

The condition when (10) is used to define the wavemaker amplitudes a priori will be re-
ferred to as ‘kinematic’ absorption. The principal approximation in this scheme is to neglect
evanescent modes which are only significant close to the wavemakers, a region that usually is
not used for experiments.

Kinematic absorption is not appropriate if there are disturbances of the incident wave system,
due to radiation and scattering from bodies within the basin or any other cause. In experimental
applications it is customary to control the absorbers based on measured values of either the
incoming waves, as in [1], or the hydrodynamic force acting on the wavemaker, as discussed
in [2] and [3]. Following the latter approach, we shall consider ‘dynamic’ absorption where
each absorber responds to the pressure force it experiences in accordance with the equation of
motion

N∑

j=1

Aijξj + (mi − idi/ω) ξi = 0. (11)

Here mi and di represent the inertial and damping coefficients of a linear control system which
restrains the absorber i. If a subset of the wavemakers (1 ≤ j ≤ NA) act as absorbers and the
others (NA + 1 ≤ j ≤ N) as generators, (11) is applied with (1 ≤ i ≤ NA), to solve for the
absorber amplitudes, and the amplitudes of the generators are defined by (10).

3 Two-dimensional wavemakers

It is useful to consider the case of two-dimensional motion with two identical wavemakers at
the opposite ends of a rectangular basin. The first wavemaker, say at x = 0, oscillates with
amplitude ξ1 and radiates waves in x > 0. Neglecting the evanescent near-field motion the
potential on the free surface is represented in the form

ξ1φ1(x, 0) ' ξ1αe−ik0x, (12)

where the coefficient α depends on ω. If the tank length is L and the second wavemaker is
stationary, perfect reflection will occur at x = L with the reflected wave system represented by
the potential

φr(x, 0) ' ξ1αe−ik0(2L−x). (13)

The sum of (12) and (13) is a standing wave with zero normal velocity on the wall x = L.
The second wavemaker, located at x = L and oscillating with amplitude ξ2, radiates a wave

system moving toward x = 0 with the form

ξ2φ2(x, 0) ' ξ2αe−ik0(L−x). (14)

This will cancel the reflected system (13) if

ξ2 = −ξ1e
−ik0L. (15)
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This construction, based on the cancelation of the reflected wave system, gives the same result
for the absorber amplitude as in the kinematic derivation represented in the more general
three-dimensional case by (10). Note that the amplitude ξj is defined in the positive sense
with reference to the normal vector on the wavemaker element. Thus the minus sign in (15) is
consistent with (10).

Reflections from the wavemaker at x = 0 are ignored in the above analysis. To complete the
solution it is necessary to add reflected waves from the periodic image boundaries at x = ±nL
for all integer values of n. This leads to a modified steady state, with the sum of (12-14)
replaced by

φ(x, 0) ' −iα

sin k0L
[ξ1 cos k0(L − x) + ξ2 cos k0x] , (16)

but the relation (15) for the optimum absorber amplitude is unchanged. In general the solution
(16) is singular at the resonant ‘sloshing’ modes of the basin where k0L = nπ, but (16) reduces
to (12) when (15) is substituted for the absorber amplitude. Thus the absorber prevents the
occurrence of resonant modes.

Using (6), the pressure force acting on each wavemaker is given by

F1 = ω2 (ξ1A11 + ξ2A12) = ω2ξ1

(
A11 − e−ik0LA12

)
, (17)

F2 = ω2 (ξ1A12 + ξ2A22) = ω2ξ2

(
A22 − eik0LA21

)
. (18)

The last factors in parenthesis can be interpreted as the ‘effective’ added mass and damping of
each wavemaker by itself, when their motions are optimized according to (15). From symmetry
it follows that A11 = A22 and A12 = A21. Thus the effective added mass

a = A11 − A12 cos k0L (19)

is the same for both wavemakers. The effective damping coefficients are ±b where the upper
sign applies to the wave generator at x = 0, the lower sign to the absorber at x = L, and

b/ω = −A12 sin k0L. (20)

It is logical to expect that the damping is positive for the generator and negative for the
absorber. This can be confirmed from the analysis in Appendix A, using (59) and neglecting
the infinite series which is exponentially small for physically relevant values of the length L.

Since there is only one absorber, the equation of motion (11) for dynamic control is

ξ2 (A22 + m− id/ω) = −A12ξ1. (21)

Optimum values for the inertia and damping coefficients can be derived by substituting (15) in
(21). Thus

m = −a and d = b, (22)

where (19) and (20) have been used. These relations are noted by Naito [3] and attributed
to Bessho [8]. From the physical viewpoint, the external inertia force should cancel the added
mass (or more generally, should be evaluated with a corresponding stiffness coefficient to achieve
resonance), and the optimum external damping is equal to the hydrodynamic damping. Similar
relations are well known in the field of wave-power conversion, as reviewed by Evans [9].
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4 Generation and absorption of oblique waves

The analysis in Section 3 can be extended for oblique wave generation and absorption by ‘snake’
wavemakers which extend to y = ±∞, with the horizontal displacement of each wavemaker
proportional to e−ik0y sinβ. Neglecting the evanescent near-field motion, the potential on the
free surface due to the wavemaker at x = 0 is

ξ1φ1(x, 0)e−ik0y sinβ ' ξ1αe−ik0(x cosβ+y sinβ). (23)

In the case where the fluid domain extends to x = ∞, analogous to the two-dimensional
wavemaker in a semi-infinite domain, the differential hydrodynamic pressure force acting on
the wavemaker can be expressed in the form

F ′
1 =

(
ω2A′ − iωB ′

)
ξ1e

−ik0y sinβ, (24)

where the added mass A′ and damping B′ depend on β. These coefficients are derived in
Appendix B. The dependence of A′ on β is illustrated in Figure 1. The dependence of B′ on β
is given by the simple relation

B′(β) = B′(0) csc β = B cscβ, (25)

where B is the two-dimensional damping coefficient (52). Thus the damping in oblique waves
is greater than in two dimensions.

If the fluid domain is bounded by a wall at x = L, the reflection of the wave system (23)
can be canceled by an absorber at x = L if

ξ2 = −ξ1e
−ik0L cosβ. (26)

In this case φ1 and φ2 are real, and the differential force on each wavemaker is given by

F ′
1 = ω2 (ξ1A

′
11 + ξ2A

′
12) e−ik0y sinβ = ω2ξ1

(
A′

11 − e−ik0L cosβA′
12

)
e−ik0y sin β , (27)

F ′
2 = ω2 (ξ1A

′
12 + ξ2A

′
22) e−ik0y sinβ = ω2ξ2

(
A′

22 − eik0L cosβA′
21

)
e−ik0y sinβ. (28)

Thus the effective added mass and damping are

a′ = A′
11 − A′

12 cos(k0L cos β) (29)

and
b′/ω = −A′

12 sin(k0L cos β). (30)

Neglecting exponentially small terms in (66) and (67), it follows from the analysis in Appendix
B that (29) and (30) are equal to the coefficients A′ and B′/ω defined by (64) and (65).

If the equation of motion for dynamic absorber control is

ξ2 (A′
22 + m− id/ω) = −A′

12ξ1, (31)

optimum values of the inertia and damping can be derived by substituting (26) in (31). Thus

m = −a′ and d = b′, (32)

as in (22), and optimum dynamic control can be achieved in oblique waves by using the cor-
responding added-mass and damping coefficients A′ and B′ in place of the two-dimensional
coefficients A and B.
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5 Three-dimensional wavemakers and basins

The three-dimensional case is treated numerically, using the radiation-diffraction code WAMIT.
Two examples are considered, a square basin 16 m by 16 m by 2 m depth, and a circular basin of
radius 10 m and depth 2 m. Hinged wavemakers are distributed uniformly around the periphery,
with the hinges at the bottom of the basin. For the square basin the generating wavemakers
are on two adjacent sides and the absorbing wavemakers are on the two opposite sides. For the
circular basin the generating and absorbing wavemakers occupy opposite semi-circular arcs. In
Figures 2-4 the generating elements are shown in black and the absorbers in red. Results are
shown for the square basin at the incidence angles β = 0 and β = 30◦, relative to the +x-axis.
For the circular basin the incidence angle is β = 90◦.

The results presented here are for a period of 2 seconds, corresponding to a wavelength of
6.05 m. Figures 2-4 show contour plots of the wave amplitude over the free surface, excluding
a 1 m strip adjacent to the wavemakers. For progressive waves of the form (8) the amplitude is
spatially constant. Reflections and other imperfections in the incident wave system are indicated
by fluctuations of the amplitude. The magnitude of the fluctuations is measured in each plot
by the standard deviation σ, defined as the square-root of the variance over the computational
domain displayed in the figures and normalized by the mean value. Similar results are shown in
[10] for basins with a depth of 1 m. The reflection coefficient, defined as the difference between
the maximum and minimum elevations divided by their sum, is 2-3 times larger than σ, but in
most cases the largest fluctuations are near the outer boundary of the computational domain
and the reflection coefficient near the center of the basin is smaller than this estimate would
indicate.

Four separate contour plots are included in each figure. The upper left plots (a) show
the standing waves which are generated when the absorbers are stationary. The upper right
plots (b) show the wave amplitude with kinematic absorption. The lower left plots (c) show
the results with dynamic absorption using the two-dimensional added mass and damping to
evaluate the absorber coefficients m and d in accordance with (22). The lower right plots (d)
show the results with dynamic absorption using the oblique-wave added mass and damping to
evaluate the absorber coefficients m and d in accordance with (32), where β is defined as the
local incidence angle relative to each absorber.

Figure 2 shows the wave amplitudes in the square basin for β = 0. Two-dimensional standing
waves are present in Figure 2(a). In Figures 2(b) and 2(d) the absorption is almost perfect,
with σ = 0.004. The results in Figure 2(c) show the limitation of using dynamic control with
two-dimensional added mass and damping for all of the absorbers; in this case with β = 0
the absorbers on the lower right wall should be stationary, as in Figure 2(b), but instead they
react to the pressure of the passing wave system to extract energy and distort the waves. In
Figure 2(d) this does not occur since the local angle of incidence is 90◦, resulting in ‘infinite’
damping of the controller according to (32) and (25). (In the post-processor used to compute
these results a finite upper bound cscβ ≤ 104 is employed to evaluate the damping.)

Figure 3 shows the corresponding results For β = 30◦. The standing-wave system in Figure
3(a) is three-dimensional, with substantial amplitude. This can be attributed to the proximity
of a resonant mode at 1.98 seconds with five longitudinal nodes and two transverse nodes,
not unlike the amplitude in Figure 3(a). The results using dynamic absorption with two-
dimensional coefficients, in Figure 3(c), are better than the corresponding results in Figure
2(c), but substantial reflections are still present. The results in Figures 3(b) and 3(d) are
clearly superior. It is surprising to note that the standard deviation in 3(d) is smaller than
3(b), and this implies that the values of σ are not accurate in the third decimal place.

The results for the circular basin in Figure 4 are similar to the results for the square basin
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β 64×1m 128×0.5m 256×0.25m

0 0.0036 0.0036 0.0036
22.5◦ 0.0324 0.0080 0.0032
45◦ 0.0505 0.0127 0.0039

Table 1: Effect of the wavemaker width on the variance σ at different incidence angles, for 64, 128, and 256
wavemakers in the square basin.

in oblique waves, with similar conclusions regarding the different absorber schemes.
For the results shown in Figures 2-4 a total of 128 wavemakers are used, with a width of

0.5 m. Table 1 shows the effect on the variance σ using different widths of 1.0 m, 0.5 m, and
0.25 m, with kinematic absorbers. The uniformity of oblique waves is improved by reducing
the width of the wavemakers, as expected.

6 Absorption of radiated and scattered waves

Bodies which are present in the basin will radiate waves, due to their motions, and also scatter
the incident waves generated by wavemakers. The radiated and scattered waves propagate
outward toward the sides of the basin. It is necessary to absorb these waves in addition to
the incident wave field. Indeed, this more general requirement is the principal reason for using
dynamic absorbers.

In order to illustrate this type of problem we consider the case of a floating hemisphere of
radius 1 m at the center of the basin. The simplest radiation problem to consider is heaving
motion of the hemisphere in the circular basin, since the motion is axisymmetric and the
absorbing wavemakers can be assumed to have the same amplitude and phase. Two alternative
approaches are used to optimize the wavemaker motion in this case.

First we consider the two standing-wave systems generated by the separate motions of the
hemisphere and wavemakers. Their amplitudes can be represented in the form

ξiηi = ξi

(
Cie

ik0r + C∗
i e

−ik0r
)
/
√

k0r, (33)

where i = 1 denotes the hemisphere, i = 2 denotes the wavemaker, Ci is a complex coefficient
and C∗

i denotes the conjugate. The first and second terms in parentheses represent inward and
outward propagating ring waves, respectively. The inward propagating waves are canceled if

ξ2/ξ1 = − (C1/C2) . (34)

This is the optimum condition for the absorber, analogous to (15) in two dimensions. In order
to evaluate ξ2/ξ1, computations are made of η1 and η2 along a radial line between r = 1.5 m
and r = 9.5 m in steps of 0.1 m. The coefficients Ci are evaluated by Fourier integration of
this data. Figure 5 shows the amplitudes of the two standing-wave components (33) for several
wave periods, and also the radiated wave η1 − (C1/C2)η2. Using (6), the force acting on the
hemisphere in the latter condition is

F1 = ω2ξ1 [A11 − (C1/C2)A12] . (35)

The added mass and damping are given by the real and imaginary parts of the factor in square
brackets.

As an alternative procedure, analogous to (21), the equation of motion for the absorber
amplitude is solved using the two-dimensional added-mass and damping coefficients. This
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avoids measurement and analysis of the free-surface elevation, and is simpler to employ in
the experimental context. Figure 6 shows the added-mass and damping coefficients of the
hemisphere, comparing the results from the two approaches with computations for the same
body in open water. The results based on the first approach are practically identical to the
open-water results. The second approach introduces a small oscillatory error for longer wave
periods, which may be explained by the fact that the two-dimensional added-mass and damping
coefficients are affected by the curvature of the wavemaker to a greater extent in longer waves.

Next we consider the diffraction problem where the hemisphere is fixed and plane progressive
waves are generated by the wavemakers with β = 0. Two separate sets of computations are
performed, without and with the hemisphere present in the basin. The first computation is a
‘calibration’ of the basin and wavemakers, where the amplitude ξ̃j of the wavemakers is defined

by (10), as in Figures 2(b) and 4(b). The resulting incident wave amplitude Ã is computed at
the center of the basin, and the added-mass coefficients Ãij are evaluated for the wavemakers.

In the second computation, with the hemisphere present in the basin, the added-mass matrix
Aij is evaluated including the hydrodynamic interactions between the hemisphere and wave-
makers. In general there are six additional modes, corresponding to the rigid-body motions
of the hemisphere, but it is only necessary to account for surge and heave, denoted by the
subscripts x and z respectively. The amplitudes ξj for the wavemakers, defined as the solution
of the linear system (11), can be expressed in the form

ξj = ξ̃j + δj, (36)

where δj is the correction to account for scattering. Since ξ̃j is the solution of (11) with Aij

replaced by Ãij, it follows that

N∑

j=1

Aijδj + (mi − idi/ω) δi = −
N∑

j=1

(
Aij − Ãij

)
ξ̃j , (i = 1, 2, ..., N). (37)

Note that this linear system is applied for all N wavemakers, and the generators of the incident
wave also serve to absorb back-scattered waves from the body.

The principal advantage of solving (37) for δj is that the kinematic amplitude (10) is used
for the incident waves, and any approximations associated with the absorbers are confined to
the component δj. In the following evaluation of the exciting force, the inertia and damping
coefficients mi and di are replaced by the corresponding constant values for a two-dimensional
wavemaker.

The added-mass coefficients Axj, Azj (j = 1, 2, ..., N) represent cross-coupling between the
sphere and wavemakers. These coefficients can be used with the solution of (37) to evaluate
the exciting force components (

Fx

Fz

)
= ω2

N∑

j=1

(
Axj

Azj

)
ξj. (38)

The values of |Fx| and |Fz| are shown in Figure 7 for the square and circular basins, and
compared with the exciting forces in open water. The maximum absolute difference between
the open-water computations and basins is about 0.03. For the phase angles, the maximum
difference is about 4◦. The most noticeable differences in Figure 7 are for the circular basin,
in longer wavelengths; these appear to be similar to the larger differences in Figure 6, which
are attributed to the effects of curvature in longer wavelengths. Small differences are apparent
also for the surge force at periods between 1.0 and 1.1 seconds, which may be attributed to
discretization errors at the shortest wavelengths.
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The same computations have been performed for the square basin using oblique added-mass
and damping coefficients, based on the angle of incidence from the center of the basin (varying
between 0◦ at the center of each side and 45◦ at the corners). The exciting forces computed in
this manner are practically the same as those based on the two-dimensional coefficients.

Additional computations, not shown here, have been performed with the exciting forces eval-
uated from (38) using the amplitudes ξ̃j, without correcting for the effect of scattering. These
results are highly oscillatory in both basins, compared to the results in Figure 7, confirming
that while the scattered waves may be small compared to the incident waves, large standing
waves can result from their reflections especially in the vicinity of wave periods where resonant
modes exist.

7 Two-dimensional wavemakers in the time-domain

Transient effects are significant in physical experiments, even when the objective is to produce
a monochromatic wave system. To illustrate these effects we consider a two-dimensional wave-
maker at x = 0, starting from rest at time t = 0 and moving with normal velocity U(t)f(z).
The velocity potential can be represented by a distribution of sources over the surface of the
wavemaker, with the source density equal to the normal velocity. To simplify the analysis it
will be assumed that the fluid depth is infinite, and thus the appropriate source potential is
given by Wehausen & Laitone ([11], eq. 13.54). The free-surface elevation is represented by
the convolution integral

ζ(x, t) =
∫ t

0
U(τ )k(x, t − τ )dτ, (39)

where the impulse-response function is

k(x, t) = − 1

π

∫ ∞

0
cosκx cos

√
gκ t

∫
f(z)eκzdzdκ. (40)

A hinged wavemaker is considered, as in the preceding Sections, with f(z) defined by (3)
and the hinge axis 2 m below the free surface. After evaluating the integral with respect to z
analytically, the remaining integral with respect to κ is evaluated numerically, as explained in
Section 8. Figure 8 shows plots of this function at six successive time steps. These results are
similar to the waves due to a concentrated impulse on the free surface (cf. Lamb [12], §§238-239),
usually referred to as the Cauchy-Poisson problem. The longer waves propagate with relatively
large velocity, and shorter waves follow behind. Unlike the solution for a concentrated impulse,
the shorter waves in Figure 8 diminish in magnitude due to the vertical distribution of the
sources on the wavemaker.

Hereafter it is assumed that the wavemaker velocity U(t) = sinωt for t > 0, with the wave
period 2π/ω = 2 seconds. The generated waves are shown for a sequence of time steps in Figure
9. The dashed lines in Figure 9 confirm that the wave front moves with the group velocity and
the individual wave crests move with the phase velocity. The waves behind the front quickly
approach their limiting sinusoidal form. Figure 6.10 in [13] shows a similar sequence of waves
based on photographs in a small physical wave tank.

If the wavemaker is at one end of a basin, with an absorbing wavemaker at the opposite end,
the synthesis described in Section 3 can be replicated in the time domain. For illustration a
basin of length L = 40 m is used, with the generating wavemaker at x = 0 and the absorber at
x = 40 m. An image wavemaker at x = 80 m is used to simulate the reflected wave, with the
same velocity U(t) as the generator. The absorber velocity is −U(t − k0L/ω), where the time
lag corresponds to the phase lag −ik0L in (15). The superposition of these three wave systems
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is shown in Figure 10. By following the crests along the lower dashed line it can be confirmed
that a steady propagating wave system is achieved, but only after a substantial time. Prior to
this partial standing waves are present. These are due primarily to starting the wave absorber
too soon, as indicated by the waves that exist in Figure 10 ahead of the original front (above
the upper dashed line near the right end). This can be anticipated since the phase lag −ik0L
corresponds to a time delay propagating with the phase velocity instead of the group velocity.

As an alternative scheme the absorber velocity is assumed to be proportional to the free-
surface elevation ζI due to the wave generator, as measured at the absorber. Thus the contri-
bution by the absorber is

ζA(x, t) = C
∫ t

0
ζI(L, τ )k(L − x, t− τ )dτ. (41)

Here the coefficient C is analogous to the transfer function between U and ζI in the frequency
domain. The result of using this absorber algorithm is shown in Figure 11. It is clearly superior
to Figure 10, with close approximation to a steady propagating wave system shortly after the
incident-wave front reaches the absorber. In addition to delaying the absorber response until
the waves arrive, this algorithm also accounts for the gradual build-up of the wave system
at the front. Since the wave elevation and pressure are closely correlated, it is likely that
similar performance can be achieved with ζI replaced in (41) by the pressure force acting on
the absorber. This would give a time-domain representation of dynamic absorption.

8 Computational details

The numerical results shown in Figures 2-7 have been obtained using the radiation/diffraction
program WAMIT. This program is intended primarily for the analysis of wave interactions with
bodies in open water, but it can be used for internal fluid domains with a free surface, such as
partially-filled tanks and wave basins. The principal requirement is that the submerged surface
of the basin, as well as the body, is defined in the geometry input to the program. (For a basin
with constant depth, as in the cases considered here, it is not necessary to include the bottom
as part of the input geometry since the boundary condition on the bottom is satisfied by the
Green function.)

Each component φj is evaluated as the solution of a discretized integral equation over the
domain including the wavemakers and body. The motion of each wavemaker is represented by
a generalized mode, with the normal velocity assigned in a special subroutine as a function of
the vertical position on the wavemaker. The higher-order method of solution is used, with the
unknown potentials represented by B-splines. The geometry of the basins and hemisphere are
represented analytically, without approximations. Each wavemaker is represented by a separate
patch, with subdivision used to achieve converged solutions. Further details can be found in
[14]. Special post-processing utilities are used to convert the standard outputs from WAMIT
to the results presented here.

In a closed basin each component φj should be real, as noted in Section 2. Since the
exterior Green function used in the program is complex, one test of the numerical accuracy of
the solution in a closed basin is to compare the magnitudes of the real and imaginary parts.
Typically the computed ratios between the damping and added-mass coefficients are on the
order of 10−3 or smaller. The corresponding ratios for the wave amplitudes are on the order of
10−5 or smaller.

The two-dimensional time-domain computations described in Section 7 have been performed
with a program which evaluates the impulse-response function and convolution integrals by
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numerical quadrature. The impulse-response function (40) is evaluated as the sum of two
separate integrals involving the sum and difference of the trigonometric arguments. These
semi-infinite integrals are replaced by infinite series of finite integrals, defined such that the
trigonometric arguments change by 2π in each interval (except for one interval where the point
of stationary phase occurs). Adaptive Romberg quadratures are used in each interval, with a
convergence tolerance of 10−5, and the summations are continued until the last ten terms in
the series are smaller than 10−6. The convolution integrals (39) and (41) are evaluated by the
trapezoidal rule with time steps equal to 0.03. This value of the time step gives converged
results in Figures 9-11, within graphical accuracy.

9 Discussion and Conclusions

The generation and absorption of waves in a closed basin has been analyzed within the frame-
work of linear potential theory. Wavemakers situated in the sides of the basin are used for
both generating and absorbing the waves. Specific results are presented for square and circu-
lar basins, with wavemakers which are hinged at the bottom of the basin. Other geometrical
configurations can be analyzed in a similar manner.

In a closed basin it is essential to absorb the incident waves generated by the wavemakers,
as well as radiated and scattered waves from bodies within the basin. Two types of controls
are considered for the absorbers, referred to as ‘kinematic’ and ‘dynamic’. In the kinematic
case all of the wavemaker elements oscillate with prescribed amplitudes of motion, and with
appropriate phases, to coincide with the normal velocity of a progressive wave at the center of
each wavemaker. If the wavemakers are sufficiently small, compared to the wavelength, this
simple approach ensures that both the wave generation and absorption will be effective provided
there are no bodies or other sources of radiation or scattering within the basin.

To provide for more general wave absorption, including radiation or diffraction from bodies,
a dynamic scheme is introduced. Each absorbing element responds to the local pressure force
from the incident waves, with an external linear controller which is represented by inertial and
damping forces. Solution of the coupled equations of motion gives the amplitude and phase
for each absorber. Optimum external control is achieved if the inertia force is equal to the
negative added mass and the damping force is equal to the wave damping, based on Havelock’s
wavemaker theory. These optimum coefficients are evaluated for normal incidence based on
two-dimensional theory in Appendix A, and for oblique incidence by a generalization of the
same theory in Appendix B.

Computations are performed in the frequency domain using the radiation/diffraction code
WAMIT. Contour plots of the wave amplitude throughout the basin are shown comparing the
results without absorbers, with kinematic absorbers, and with dynamic absorbers. The quality
of the absorbers is measured by the variance of the wave amplitude. Without absorbers there
are severe standing waves due to reflection from the walls opposite to the wave generators, and
from the generators themselves. With kinematic absorbers the variance is very small, and there
is practically no reflection. The effectiveness of dynamic absorbers depends on the assumptions
used to derive the added-mass and damping coefficients. For incident wave absorption in a
basin without radiation and scattering from a body, dynamic absorbers are as effective as
kinematic absorbers when oblique added-mass and damping coefficients are used to account for
the local incident angle at the absorbers. The use of two-dimensional added-mass and damping
coefficients is less satisfactory.

In order to study the effects of radiation and scattering, computations are performed with a
floating hemisphere in the center of the basin. Two specific applications are considered, first to
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evaluate the added mass and damping due to heaving motion of the hemisphere in a circular
basin, and then to evaluate the exciting force in incident waves for both the square and circular
basins. In the heaving problem the motion is axisymmetric, and the absorbing wavemakers
around the basin have the same amplitude and phase. The absorber is optimized first by
analysis of the free-surface elevation in the basin, and then by a dynamic approach. Both give
good approximations for the added mass and damping of the hemisphere in open water, but the
dynamic approach shows small oscillatory errors in longer wavelengths which may be attributed
to the use of two-dimensional theory for the determination of absorber control.

The evaluation of the exciting forces on the hemisphere is more challenging, since the three-
dimensional scattered wave field is superposed on the incident wave system and both must be
absorbed to achieve satisfactory results. The method adopted here is to use kinematic absorp-
tion for the incident waves, and dynamic absorption for the difference in the wave field due to
scattering. This gives good results for the exciting forces in both the square and circular basins,
based on comparisons with separate computations in open water. Similarly good performance
can be expected if dynamic absorbers are used for both the incident and scattered waves, pro-
vided their angle of incidence is measured and accounted for using oblique added-mass and
damping coefficients.

The two-dimensional time-domain analysis in Section 8 illustrates some transient phenomena
that are relevant to absorber control. Comparison of the results shown in Figures 10 and 11
suggests the utility of wavemaker control based on measuring the instantaneous free-surface
elevation at the absorber. Similar results are expected using the exciting force in place of
the elevation. In physical experiments it may be difficult to separate the contribution due
to the incident waves from the total elevation or force including the absorber’s own motion.
Theoretical and numerical analysis may be useful in this context.

The dynamic absorber control is frequency-dependent. This complicates applications in the
time domain, as discussed by Maisondieu & Clément [15] and also by Naito [3]. Thus the
present work may represent an upper bound on the performance of wave absorbers.
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Appendix A – Solution for two-dimensional wavemaker

A fluid of constant depth h is bounded on the left by a vertical wavemaker at x = 0. The
wavemaker oscillates with amplitude f(z) cos ωt, and normal velocity −ωf(z) sin ωt. If the
harmonic time dependence is represented by the complex factor eiωt, the velocity potential φ
satisfies the boundary conditions

∂φ

∂x
= iωf(z) on x = 0, (42)

∂φ

∂z
= 0 on z = −h, (43)

and the free-surface condition (4). Following Havelock [7], the potential can be expressed in
the general form

φ = C0 cosh k0(z + h)e±ik0x +
∞∑

n=1

Cn cos kn(z + h)e±knx. (44)

Here k0 is the positive real root of the dispersion relation (9) and kn denotes the positive
imaginary roots. The eigenfunctions (cosh k0(z+h), cos kn(z+h)) are complete and orthogonal
in the domain (−h ≤ z ≤ 0).

It is convenient to define the integrals

c0 =
∫ 0

−h
f(z) cosh k0(z + h)dz = (k0h sinh k0h − cosh k0h + 1)/(k2

0h), (45)

cn =
∫ 0

−h
f(z) cos kn(z + h)dz = (knh sin knh + cos knh − 1)/(k2

nh), (46)

where the last results in (45) and (46) apply for a hinged wavemaker with f(z) = (z + h)/h.

For the usual case of a semi-infinite fluid domain (0 < x < ∞) a radiation condition is imposed
with waves moving in the +x direction. Thus

φ = C0 cosh k0(z + h)e−ik0x +
∞∑

n=1

Cn cos kn(z + h)e−knx, (47)

where

C0 =
−4ωc0

sinh 2k0h + 2k0h
, (48)

Cn =
−4iωcn

sin 2knh + 2knh
. (49)

The added-mass and damping coefficients follow from the integral of the pressure force acting
on the wavemaker,

ω2A − iωB = −iρω
∫ 0

−h
f(z)φ(0, z)dz. (50)

Thus

A = 4ρ
∞∑

n=1

c2
n

sin 2knh + 2knh
, (51)

B = 4ρω
c2
0

sinh 2k0h + 2k0h
. (52)
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More generally, if the hinge depth h is less than the fluid depth H, equations (45) and (46) are
replaced by

c0 =
∫ 0

−h
f(z) cosh k0(z + H)dz = [ cosh k0(H − h)(k0h sinh k0h − cosh k0h + 1)

+ sinh k0(H − h)(k0h cosh k0h − sinh k0h), ]/(k2
0h) (53)

cn =
∫ 0

−h
f(z) cos kn(z + H)dz = [ cos kn(H − h)(knh sin knh + cos knh − 1)

+ sin kn(H − h)(knh cos knh − sin knh)]/(k2
nh). (54)

For a basin of finite length, with the fluid domain (0 < x < L), the radiation condition is
replaced by the boundary condition φx = 0 on x = L and the potential is

φ = C0 cosh k0(z + h) cos (k0(L − x)) +
∞∑

n=1

Cn cos kn(z + h) cosh (kn(L − x)) e−knL, (55)

where

C0 =
4c0ω

(sinh 2k0h + 2k0h) sin k0L
, (56)

Cn =
−4cnωeknL

(sin 2knh + 2knh) sinh knL
. (57)

In this case there is no damping, and the added-mass coefficients defined in Section 3 are

A11 = ρ
∫ 0

−h
f(z)φ(0, z)dz = −4ρ

c2
0 cot k0L

sinh 2k0h + 2k0h
+ 4ρ

∞∑

n=1

c2
n coth knL

sin 2knh + 2knh
, (58)

A12 = ρ
∫ 0

−h
f(z)φ(L, z)dz = −4ρ

c2
0 csc k0L

sinh 2k0h + 2k0h
+ 4ρ

∞∑

n=1

c2
n cschknL

sin 2knh + 2knh
. (59)

The coefficients (58, 59) are singular when k0L = nπ, but the effective added mass and damping
(19, 20) are nonsingular. When L/h >> 1 the differences between (19, 20) and (51, 52) are
exponentially small.

Appendix B – Solution for oblique waves

The analysis in Appendix A can be extended for oblique wave generation and absorption by
‘snake’ wavemakers in the planes x = 0 and x = L, with sinusoidal variation of the amplitude
in the y−direction. Assuming the wavemakers extend to infinity in both directions, the velocity
potential can be represented in the form φ(x, z)e−ik0y sinβ. The boundary conditions (42) and
(43) are unchanged, and (44) is replaced by

φ = C ′
0 cosh k0(z + h)e±ik′

0x +
∞∑

n=1

C ′
n cos kn(z + h)e±k′

nx, (60)

where, in order to satisfy the Laplace equation,

k′
0 = k0 cos β
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and
k′

n =
√

k2
n + k2

0 sin2 β.

For the case where the fluid domain extends to x = ∞ (47) is replaced by

φ = C ′
0 cosh k0(z + h)e−ik′

0x +
∞∑

n=1

C ′
n cos kn(z + h)e−k′

nx, (61)

where
C ′

0 = C0 cscβ, (62)

C ′
n = Cn(kn/k′

n). (63)

and the coefficients C0 and Cn are given by (48) and (49). The added-mass and damping
coefficients defined by (24) are

A′ = 4ρ
∞∑

n=1

c2
n(kn/k′

n)

sin 2knh + 2knh
, (64)

B′ = 4ρω
c2
0 cscβ

sinh 2k0h + 2k0h
. (65)

Thus the damping coefficient for oblique-wave generation is simply proportional to cscβ. This
can be confirmed by noting from the x−derivative of (8) that the amplitude of the generated
waves, for unit wavemaker amplitude, is proportional to cscβ. Thus the energy density is
proportional to csc2 β. Since the component of the group velocity normal to a control surface
x = constant is proportional to cosβ, the rate of energy flux is proportional to cscβ.

For a basin of finite length the added-mass coefficients (58, 59) are replaced by

A′
11 = ρ

∫ 0

−h
f(z)φ(0, z)dz = −4ρ

c2
0 cot k′

0L csc β

sinh 2k0h + 2k0h
+ 4ρ

∞∑

n=1

c2
n(kn/k′

n) coth k′
nL

sin 2knh + 2knh
, (66)

A′
12 = ρ

∫ 0

−h
f(z)φ(L, z)dz = −4ρ

c2
0 csck′

0L cscβ

sinh 2k0h + 2k0h
+ 4ρ

∞∑

n=1

c2
n(kn/k′

n) cschk′
nL

sin 2knh + 2knh
. (67)

As in the case of two dimensions, φ is real and the local force acting on the wavemakers is
expressed completely by the added-mass coefficients.
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Figure 1: Effect of oblique incidence on the added mass of the ‘snake wavemaker’. These results are based on
(64), and normalized by the limiting value for β = 0, which corresponds to the two-dimensional added mass
(51). Wave periods (PER) are in seconds.
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Figure 2: Amplitude of waves in the square basin with generators (black) and absorbers (red). The waves
propagate in the +x-direction (β = 0). The upper left plot (a) shows the standing-wave system without
absorption. The absorbers are (b) kinematic, (c) dynamic with 2D added-mass and damping forces, and (d)
dynamic with oblique added-mass and damping forces. Note that different ranges of colors are used to represent
the amplitude in each plot. The variance σ indicates the magnitude of reflections and nonuniformity in the
wave system.

Figure 3: Amplitude of waves in the square basin with generators (black) and absorbers (red). The waves
propagate in the direction (β = 30◦) relative to the +x−axis. The upper left plot (a) shows the standing-wave
system without absorption. The absorbers are (b) kinematic, (c) dynamic with 2D added-mass and damping
forces, and (d) dynamic with oblique added-mass and damping forces. Note that different ranges of colors
are used to represent the amplitude in each plot. The variance σ indicates the magnitude of reflections and
nonuniformity in the wave system.
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Figure 4: Amplitude of waves in the circular basin, with generators (black) in the sector (y < 0) and absorbers
(red) in (y > 0). The waves propagate in the +y-direction (β = 90◦). The upper left plot (a) shows the
standing-wave system without absorption. The absorbers are (b) kinematic, (c) dynamic with 2D added-mass
and damping forces, and (d) dynamic with oblique added-mass and damping forces.
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Figure 5: Plots showing the amplitudes of the standing waves in the circular basin, generated by heaving motion
of the hemisphere (green) and axisymmetric motion of the wavemaker (blue) for different periods in seconds
(PER). The amplitude of the wavemaker motion is reduced by a factor of (1/10) for convenience in plotting.
The red lines represent the amplitude of the radiating wave from the hemisphere with optimum absorption by
the wavemaker. The abscissa is the radial distance r from the center of the basin. The reflection coefficient R is
defined by the relation R = (ηmax − ηmin)/(ηmax + ηmin) where (ηmax, ηmin) are the maximum and minimum
values of the radiated wave amplitude, multiplied by

√
kr, in the range between 1.5 m and 9.5 m radius from

the center. The hemisphere radius is 1 m and the basin radius is 10 m.
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Figure 6: Added mass (red upper lines) and damping (blue lower lines) for the heaving hemisphere. The dashed
lines are based on the optimum absorber amplitude derived from the free-surface elevations, using (35). The
dot-dash lines are from computations with dynamic control of the wave absorber. The solid lines are from
computations in open water. The added mass is normalized by ρ and the damping by ρω. The abscissa is the
wave period in seconds.

Figure 7: Exciting forces for the hemisphere in surge (red upper left lines) and heave (blue lower left lines). The
dashed lines (square basin) and dot-dashed lines (circular basin) are based on computations using kinematic
control to absorb the incident waves and dynamic control to absorb the scattered waves. The solid lines are
from computations in open water. The exciting forces are normalized by ρgA, where the wave amplitude A is
evaluated at the center of the basin without the hemisphere. The abscissa is the wave period in seconds.
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Figure 8: Plots of the influence function (40) at a sequence of time steps t between 1 (top) and 6 (bottom)
seconds. The distance x is in meters.

Figure 9: Waves generated by the wavemaker at x = 0, at a sequence of time steps t between 1.5 (top) and 60
(bottom) in steps of 1.5 seconds. The wave period is 2 seconds. The slopes of the upper and lower dashed lines
are equal to the group velocity and phase velocity, respectively.
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Figure 10: Waves generated by the wavemaker at x = 0, with an image wavemaker at x = 80 m and an absorber
at x = 40 m, to simulate absorption in a basin of length L = 40 m. The slopes of the upper and lower dashed
lines are equal to the group velocity and phase velocity, respectively.

Figure 11: Waves generated by the wavemaker at x = 0, with an absorber at x = 40 m. The velocity of
the absorber is proportional to the elevation of the incident wave at the absorber, and the resulting waves are
defined by (41). The slopes of the upper and lower dashed lines are equal to the group velocity and phase
velocity, respectively.
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