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1 I N T RODUCT I ON

In the technical development of mobile o®shore bases, one of the important hy-
drodynamic issues is the interaction between waves and structural de°ection of
the modules. It is obvious that the waves will cause structural loading on the
modules, and resultant de°ections, but it is not so clear if these de°ections will
be signi¯cant from the hydrodynamic standpoint. This question is addressed in
the present work, which extends the computational analysis reported in Parts
1-3. There the modules were assumed to be rigid and computations were per-
formed for the vertical motions and shear forces acting on the hinges.

Here we assume that the de°ection of each module is governed by the beam
equation, and computations are performed to show how di®erent values of the
sti®ness a®ect the vertical motions, shear forces, and de°ection of each module.
As in the earlier work, each module is assumed to be a rectangular `barge'
with length 1200 feet, beam 500', and draft 20'. The modules are connected by
simple hinges, with no gaps between adjacent modules. The structural de°ection
along the length of each module is assumed to be vertical, and independent of
the transverse coordinates. The mass distribution and stuctural sti®ness are
assumed to be uniform along the length of each module.

As in Part 3, the computations are performed with the program HIPAN.
This is a higher-order panel code which uses continuous B-splines to represent
the velocity potential and pressure acting on the body surface [1]. The body ge-
ometry is described exactly. HIPAN has been extended to permit the de¯nition
and use of generalized modes, which are employed here to represent the hinge
de°ections as de¯ned in Part 1, and discontinuous shear modes which are used
to evaluate the shear forces on the hinges, as described in Part 2. In addition
we now include a set of Fourier modes which represent the vertical bending
de°ection of each module. In order to achieve computational e±ciency these
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bending modes are decomposed into pairs of components which are respectively
symmetrical and antisymmetrical about the middle of the array.

As in the earlier work, a Cartesian coordinate system (x; y; z) is used with
z = 0 the undisturbed free surface, x positive toward the `bow' of the array, y
positive toward the port side of the array, and z positive upwards. Each module
is considered to be an identical °oating vessel with geometric symmetry about
the vertical centerplane y = 0 and also about its midship section. The origin
x = 0 is at the midpoint of the array. Simple transverse hinge joints are located
at x = xn (n = 1; 2; :::; N ¡ 1). These are numbered in ascending order from
the stern (x = x0) to the bow (x = xN ). The overall length L of each module
is de¯ned as the distance between adjacent hinges, xn + 1 ¡ xn. As in Part 1 we
assume that the hinge axes are in the plane z = 0, and we neglect surge.

In general the motions of the array will include six conventional rigid-body
modes (surge, sway, heave, roll, pitch, yaw) where the entire array is translating
and rotating as a rigid body, and N ¡ 1 additional modes corresponding to
de°ections of the hinges. Since the array geometry is symmetric about y = 0,
there is no coupling between the vertical motions considered here (heave, pitch,
and hinge de°ections) and the sway, roll, and yaw motions. Similarly, the
vertical bending displacement of each module is coupled with the vertical modes,
but not with sway, roll or yaw. Thus we shall ignore the latter three modes.

It should be noted that horizontal bending and torsional de°ection of the
array will also occur, in general. Complementing the symmetric modes described
above, these antisymmetrical structural de°ections are coupled to sway, roll, and
yaw, but not to surge, heave or pitch. Thus the horizontal bending and torsional
de°ections can be analyzed separately from the present analysis, using similar
computational methods.

In addition to the assumptions noted above, we assume that the array of
modules is unrestrained, with hydrostatic equilibrium in its mean position when
no waves are present and with positive stability in the vertical modes. Thus the
submerged volume of each module is equal to the ratioM=½ whereM is its mass
and ½ the °uid density. The analysis which follows considers only the linearized
oscillatory perturbations about this mean equilibrium.

2 AN ALYSI S OF B E N DI N G DE FLE CT I ON S

The vertical displacement at a position x along the array, due to the super-
position of all vertical motions and bending de°ections, is de¯ned in the form
Re

¡
»(x) ei!t

¢
. This displacement is continuous along the array, and governed

by the beam equation

¡!2m» + (EI»00)00 = Z(x); (2.1)

Here m(x) is the mass per unit length, E is the modulus of elasticity, and
I denotes the moment of inertia for the cross-sectional area of the structure.
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Primes denote di®erentiation with respect to x, and Z(x) is the local pressure
force acting on a vertical section of unit length along the array.

The appropriate boundary conditions imposed on the structure are that (i)
the structural moment vanishes at the two ends and also at each hinge:

(EI»00) = 0; x = xn (n = 0; 1; 2; :::; N); (2.2)

(ii) the shear force vanishes at the two ends:

(EI»00)0 = 0; x = x0; x = xN ; (2.3)

and (iii) the shear force is continuous between adjacent modules:

h
(EI»00)0

i+
¡

= 0; x = xn (n = 1; 2; :::; N ¡ 1): (2.4)

The left hand side of (2.4) denotes the di®erence in the shear force across the
hinge.

The displacement » may be expanded in an appropriate set of modes, in the
form

»(x) =
X
j

»jfj(x); (2.5)

where the (complex) amplitude »j of each mode is unknown. The appropriate
modes will include heave and pitch of the entire array, moving as a rigid body,
and N ¡ 1 hinge de°ections, as de¯ned in Part 1. In addition we now include
a suitable set of modal functions to represent the bending de°ection of each
module. Since the vertical displacement of each hinge is represented by the
preceding modes, the bending modes are de¯ned such that these vanish at the
ends of the module, and on all other modules. In addition to these modes, which
represent the actual physical displacement of the array, N ¡ 1 discontinuous
shear modes will also be used, as in Part 2, to evaluate the vertical shear forces
acting on the hinges.

Adopting the method of weighted residuals as in [2], (2.1) is multiplied by
fi(x) and integrated along the length, to give the system of equations

NX
n = 1

Z xn

xn ¡ 1

fi(x)
£
¡!2m»(x) +

¡
EI»00(x)

¢
00
¤
dx =

NX

n = 1

Z
xn

xn ¡ 1

fi(x)Z(x)dx: (2.6)

Note that we have not yet approximated »(x) in terms of its modal expansion.
Before doing so, we consider the sti®ness term, which can be integrated by parts
two times. It follows that

P
N

n = 1

R xn
xn¡ 1

fi(x)
¡
EI»00(x)

¢
00

dx =
P

N

n = 1

R xn
xn ¡ 1

f 00

i
(x)

¡
EI»00(x)

¢
dx

+
P

N¡1

n = 1

h
fi(x)

¡
EI»00(x)

¢
0

¡ f 0

i
(x)

¡
EI»00(x)

¢i+
¡

(2.7)

The contributions from the last pair of terms vanish at the two ends, as in the
usual case of a single beam, in view of the boundary conditions (2.2) and (2.3).

3



In addition, since the modes fi and shear force
¡
EI»00(x)

¢
0

are both continuous
at each hinge, and the moment vanishes, the contributions from the last pair
of terms in (2.7) also vanish at the hinges. (Continuity of the bending modes
is required, but the ¯rst derivatives can be discontinuous. When discontinuous
shear modes are used to evaluate the hinge shear loads, as in Section 3 of Part
2, the required shear load component is equal to the non-vanishing contribution
from the ¯rst term on the last line of equation 2.7.) Thus (2.6) can be replaced
by

NX
n = 1

Z xn

xn ¡ 1

£
¡!2mfi(x)»(x)+EIf 00

i (x)»
00(x)

¤
dx =

NX

n = 1

Z xn

xn ¡ 1

fi(x)Z(x)dx: (2.8)

At this point (2.5) is substituted for »(x), and the conventional linear system
follows in the form

X
j

»j
£
¡!2Mij + Cij

¤
=

NX
n = 1

Z xn

xn¡ 1

fi(x)Z(x)dx; (2.9)

where the coe±cients on the left-hand-side are the mass matrix

Mij =

NX
n = 1

Z xn

xn ¡ 1

mfi(x)fj(x)dx (2.10)

and the sti®ness matrix

Cij =

NX
n = 1

Z xn

xn ¡ 1

EIf 00

i (x)f
00

j (x)dx: (2.11)

The hydrodynamic and hydrostatic coe±cients on the right-hand-side of
(2.9) are evaluated by HIPAN, to give the added mass, damping, hydrostatic
restoring, and exciting forces and moments corresponding to each of the modes.
The program also will evaluate the response-amplitude operator (RAO) in each
mode, provided the mass and sti®ness matrices (2.10-11) are input.

3 DE FI N I T I ON OF T H E B E N DI N G M ODE S

We now consider the explicit de¯nitions of the bending modes, in terms of a
separate Fourier sine series for each module. For this purpose it is helpful to
de¯ne the normalized local coordinate

u = (x¡ xn¡1)=L (3.1)

associated with the interval (xn¡1 < x < x
n
). Along the length of each module

u increases from 0 to 1. Since the structural de°ections vanish at the end points,
an appropriate set of modes are de¯ned by

f̂ (m)
n

(u) = sin(m¼u) (n = 1; 2; :::; N ; m = 1; 2; :::;M) (3.2)
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Figure 1: The ¯rst (m = 1) and second (m = 2) bending modes for the array
with N = 5 modules.

with the understanding that f̂n(u) = 0 when x < xn¡1 or x > xn. In principle
an in¯nite number M of these modes is required on each module, but an arbi-
trary degree of numerical accuracy can be achieved by truncating the set at a
su±ciently large ¯nite integer m =M . While it is not strictly necessary for the
separate modes to satisfy the boundary conditions (2.2-4), we note that (2.2) is
in fact satis¯ed by (3.2).

Symmetric and antisymmetric modes are constructed in the forms

fj(u) = f̂ (m)
n (u) + f̂

(m)
N + 1¡n(u) (n = 1; 2; :::; [N=2]) (3.3)

fj(u) = f̂ (m)
n (u)¡ f̂

(m)
N + 1¡n(u) (n = 1; 2; :::; [N=2]) (3.4)

When N is odd the additional modes

fj(u) = f̂ (m)
n (u) (n = (N + 1)=2)) (3.5)

must be included, to account for the de°ection of the middle module.
The index j in (3.3-5) is assigned following the rigid-body modes (j = 1¡6),

the hinge modes (j = 7; ::::; N+5), and the shear modes (j = N+6; ::::; 2N+4).
Thus

j = N(m+ 1) + 5;N(m+ 1) + 7; :::; N(m+ 1) + 2[N=2] + 3 modes (3:3)

j = N(m+ 1) + 6;N(m+ 1) + 8; :::; N(m+ 1) + 2[N=2] + 4 modes (3:4)

j = N(m+ 2) + 4 (N = odd) mode (3:5)
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Figure 1 shows the ¯rst two Fourier modes for each module, with the corre-
sponding index j, for the case N = 5.

With the bending modes de¯ned as above, the only nonzero integrals in
(2.11) are on the diagonal (i = j) for j ¸ 2N + 5. For the modes de¯ned by
(3.3) and (3.4) the sti®ness coe±cients have the following values:

Cjj = ¼4m4EI=L3 (j ¸ 2N + 5) (3.6)

For the middle module when N is odd, corresponding to the modes (3.5),

Cjj =
1

2
¼4m4EI=L3 (j = N(m+ 2) + 4); (N = odd) (3.7)

It is convenient to de¯ne the nondimensional sti®ness coe±cient S = EI=½gL5,
where ½ is the °uid density, g gravity, and L is the length of each module. From
the physical standpoint, this coe±cient represents the ratio between the struc-
tural sti®ness and the hydrostatic restoring force.

4 H YDRODYAM I C COE FFI CI E N T S

Figure 2 shows the computed values of the hydrodynamic coe±cients for each
mode, at the wave period T = 12 seconds, to illustrate the relative importance
of di®erent modes. For this purpose the added-mass coe±cients are normalized
by the total mass of the array, except for the pitch mode (j = 5) where the
second moment of inertia is used. The damping coe±cients are normalized by
the same factors, and by the frequency !. The exciting-force coe±cients and
response-amplitude operators (RAO) are for head seas, and show the moduli of
the corresponding complex quantities. The normalization factor for the exciting
force is the product of the °uid density ½, gravity g, wave amplitude A, and the
area of the waterplane (waterplane moment of inertia for j = 5). The RAO's are
normalized by the wave amplitude, except for j = 5 which represents the pitch
angle in degrees per unit wave amplitude in feet. For the RAO evaluations the
nondimensional sti®ness factor S = 0 is used, corresponding to the case where
the barges are completely °exible.

In the interpretation of these results we note ¯rst that the wavelength corre-
sponding to T = 12 seconds is equal to 737 feet, hence there are approximately
8 waves along the length of the array. Since there is no structural sti®ness the
barges are expected to de°ect locally in phase with the incident wave, and this
will be con¯rmed in the next Section. This limiting case is a stringent test of
the numerical accuracy, since a relatively large number of modes are required
to represent the oscillatory motion along the array. The trend of the RAO with
increasing mode index suggests that the truncation error in (2.5) is of order
10¡2.

The added-mass and damping coe±cients are relatively large for the rigid-
body modes j = 3; 5 and (to a slightly less extent) also for the hinge modes. This
is expected for the vertical motion of a °oating body with large waterplane area
and small draft. For the bending modes these coe±cients diminish rapidly with
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Figure 2: Normalized values of the hydrodynamic coe±cients for each mode

index j. The wave period T = 12 seconds. In the lower ¯gures the moduli

of the complex exciting-force coe±cients and RAO's are plotted, for head seas,

and the sti®ness factor S = 0 is used for the RAO's. The attenuation of the

added-mass coe±cients for j > 90 is a numerical error caused by an insu±cient

number of longitudinal panels, as explained in Section 9.
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increasing Fourier index m, due to hydrodynamic cancelation along the length
associated with the oscillatory modes. The attenuation of the damping is greater
than for the added mass, since the energy radiated to the far ¯eld is reduced.
[Radiated waves moving away from the body in the far ¯eld, propagating in the
direction µ relative to the x¡axis, are of the form exp(iKx cos µ § iKy sin µ)
where K = !2=g is the wavenumber. Assuming a long slender body and an
oscillatory mode of motion proportional to exp(ikx), radiation in the near ¯eld of
the body can only occur if k < K . For the complete three-dimensional solution
this near-¯eld analysis is not strictly valid, but it does explain qualitatively the
fact that the damping is small compared to the added mass when the Fourier
mode index m is large.]

All three of the force coe±cients display a grouping of the bending modes
in sets of ¯ve, corresponding to the di®erent modes shown in Figure 1. For the
exciting force one pair of coe±cients is relatively large. These correspond to
the symmetric and antisymmetric modes of the end modules. The forces acting
on the interior three modules are much smaller. The pair of modes for the end
modules have opposite phase, cancelling at the downwave end and reinforcing at
the upwave end. Thus the exciting force acting on the upwave module is much
larger than the forces on the other modules, as may be expected. Similarly, the
damping coe±cients of the end modules are larger than the others due to the
presence of the adjacent free surface at the ends.

The results shown for the added mass are attenuated, starting at about j =
90, due to using an insu±cient number of panels in the longitudinal direction;
this numerical error, which does not a®ect the other coe±cients in Figure 2
within graphical accuracy, is discussed further in Section 9.

5 E LE VAT I ON ALON G T H E LE N GT H

Figures 3-6 show the elevation of the array along its length in head waves, for
four di®erent wave periods and six di®erent values of the sti®ness coe±cient
S. The elevation is normalized by the incident-wave amplitude. The solid
and dashed curves correspond respectively to the real and imaginary parts of
the vertical displacement »(x). The sti®ness coe±cients shown cover the range
from e®ectively rigid (S = 0:1) to completely °exible (S = 10¡6 to 10¡8). In the
transition regime between S = 10¡3 and 10¡4 hydroelastic e®ects are expected
to be important.

In the most °exible cases (S = 10¡6 and 10¡8) there is a quarter-period
phase di®erence between the real and imaginary displacements, hence the de-
°ection is a wave-like disturbance propagating along the length of the array
with the same phase velocity as the incident waves. It is interesting to note in
these cases that the de°ection is substantially greater than the incident wave
amplitude. This ampli¯cation is due to the e®ect of ¯nite draft, as explained
below.

Intuitively one might expect that a °oating body with no structural sti®ness,
and uniform mass distribution, would deform to follow precisely the incident-
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wave elevation. In the case of a `mat' with zero draft this behavior was con¯rmed
using WAMIT [3]. (This limiting case was regarded in that work as a stringent
test of numerical accuracy.)

For hinged modules with zero sti®ness, the hinges are irrelevant and the
array will have the same vertical motions as a °exible monohull with the same
overall dimensions. The plots for S = 10¡8 in Figures 3-6 con¯rm that the
elevation follows the incident wave, with the same phase velocity and a nearly-
sinusoidal form. However the amplitude is greater than the incident wave by up
to 100% for wave periods of 12 and 16 seconds, decreasing to the wave amplitude
asymptotically as the period increases. The same conclusions are indicated in
Figures 12-13.

It may seem surprising, for a structure with horizontal dimensions 6000' by
500' in the presence of incident waves with wavelengths greater than 700', that
a draft of only 20' causes such a substantial increase in the motions. In fact,
the draft has no signi¯cant e®ect on the hydrodynamic force coe±cients, on
the right side of the equations of motion (2.9), but only on the mass matrix
(2.10). (The sti®ness matrix (2.11) is assumed to be zero in this context, and
thus independent of the draft.) For the lower-order modes including heave and
pitch, the added mass dominates the body mass, as illustrated in Figure 2,
and the damping is substantial. However for the higher-order modes, which
are important only when the sti®ness is small, the added mass and damping
are much smaller and the body mass is more important. (In this context it
should be noted that the diagonal elements Mii of the mass matrix (2.10) do
not attenuate for increasing values of the Fourier mode index m.) Since the
body mass is proportional to the draft, the observed results are explained.

6 E LE VAT I ON AT T H E M ODULE E N DS

Figures 7-13 show the elevations at the ends of each module, including the stern,
hinges, and bow, for wave periods between 6 and 30 seconds. In each plot ¯ve
di®erent wave headings are shown including 180± (head seas) and 140± to 110±,
the range of oblique headings where the maximum shear forces occur on the
hinges. The elevations are normalized by the incident-wave amplitude.

Sti®ness coe±cients from S = 0:1 to S = 0 are included. Comparison of
the ¯rst two ¯gures con¯rms that there is no signi¯cant e®ect of bending for
S ¸ 10¡2. Conversely, comparison of the last pair of ¯gures con¯rms that

S = 10¡8 is practically equivalent to the limit S = 0 except for the shortest

wave periods, where the numerical accuracy is uncertain.

7 B E N DI N G DE FLE CT I ON

Figures 14-18 show the bending de°ections at the midpoint of each module,

normalized by the incident-wave amplitude. Sti®ness parameters greater than

S = 10¡2 are omitted since the corresponding de°ections are not visible in the
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plots.

8 H I N GE SH E AR FORCE S

Figures 19-24 show the vertical shear force acting at each hinge. The cases
S = 10¡1 and S = 10¡2 are identical except for minor di®erences, con¯rming
that there are no signi¯cant e®ects of structural de°ection on the shear forces
when S ¸ 10¡2. In general, for S < 10¡2, decreasing sti®ness also decreases the
shear forces, as one expects. However this trend is reversed for hinge 1 (nearest
the stern) at S = 10¡3, for oblique wave headings and periods below 15 seconds.
This suggests a structural resonance in this regime.

9 COM P UT AT I ON AL N OT E S

The results presented here are based on computations performed with the
HIPAN program. Geometric symmetry about x = 0 and y = 0 is exploited
to reduce the total number of unknowns in the hydrodynamic solution. The
surface of each module (in the domain x > 0, y > 0) is described exactly by °at
rectangular `patches', using one patch on the bottom, one on the side, and one
patch on the end of the last module. The solution for the velocity potential is
represented by B-splines in terms of orthogonal parametric coordinates which
lie in each patch. The accuracy of the solution depends on the order of the
B-splines, which has been set equal to 3, and on the number of subdivisions of
the patches into `panels'. Based on preliminary computations for a single mod-
ule, it was found that about three decimals accuracy could be achieved using
8 longitudinal subdivisions along each module, two vertically on the sides and
ends, four transversely across half of the end, and two transversely across half
of the bottom. These subdivisions were used for all of the results shown, with
the exception of the plots in Figure 2 which are discussed below.

The number M of Fourier bending modes on each module was initially set
equal to 9, but increased to 18 to re¯ne the results for the smallest values of the
sti®ness parameter. With M = 18 there are a total of 5 £ 18 bending modes,
in addition to the 10 modes used to represent heave, pitch, hinge motions, and
hinge shear. Thus a total of 100 radiation solutions were included.

The choice of 8 longitudinal subdivisions on each module was found to a®ect
the added-mass coe±cients and RAO's shown in Figure 2. For the modes j ¸ 54,

corresponding to the Fourier index m > 8, the added mass was attenuated

by about one decade, and the RAO's were increased by a similar factor. It

is logical to expect that as the Fourier index is increased a larger number of

longidutinal subdivisions will be required to adequately represent the solution.

To overcome this problem the number of longitudinal subdivisions was increased

to 16 per module for the results shown in Figure 2. Even with this more complete

representation of the solution some attenuation is evident in the added-mass

coe±cients for j ¸ 90 or m ¸ 16. In addition to the coe±cients shown in
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Figure 2, the elevation along the length shown in the last plot of Figure 3 was
re-computed with this more accurate solution, with no observable di®erences
within graphical precision. Thus it is reasonable to assume that this re¯nement
has no signi¯cant e®ect on any other results shown here.

Our objective in performing these computations has been to achieve an ac-
curacy in all of the results within the graphical tolerance of the ¯gures. The
convergence tests which have been conducted suggest that this objective has
been achieved in most but not all cases. The exceptions occur for the smallest
values of the sti®ness parameter (S = 0 and S = 10¡8), and for wave periods
below approximately 12 seconds. In this regime 18 bending modes for each
module is not su±cient, and possibly the number of panels must be increased
as well if accurate results are required. Since there is little practical importance
to such °exible structures, we have not attempted to re¯ne the computations
to overcome this limitation. Indeed, the main purpose for considering the cases
where S · 10¡6 is to demonstrate that the de°ections of very °exible modules
follow the phase of the incident wave.
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Figure 3: Elevation along the length, T = 12 seconds, head seas. The solid and
dashed lines denote the real and imaginary parts of »(x), respectively.
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Figure 4: Elevation along the length, T = 16 seconds, head seas. The solid and
dashed lines denote the real and imaginary parts of »(x), respectively.
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Figure 5: Elevation along the length, T = 20 seconds, head seas. The solid and
dashed lines denote the real and imaginary parts of »(x), respectively.
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Figure 6: Elevation along the length, T = 24 seconds, head seas. The solid and
dashed lines denote the real and imaginary parts of »(x), respectively.
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Figure 7: Elevation at the stern, hinges, and bow. Sti®ness S = 10¡1. The

wave headings in degrees are shown in the legend with 180± head seas.
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Figure 8: Elevation at the stern, hinges, and bow. Sti®ness S = 10¡2. The

wave headings in degrees are shown in the legend with 180± head seas.
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Figure 9: Elevation at the stern, hinges, and bow. Sti®ness S = 10¡3. The

wave headings in degrees are shown in the legend with 180± head seas.
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Figure 10: Elevation at the stern, hinges, and bow. Sti®ness S = 10¡4. The

wave headings in degrees are shown in the legend with 180± head seas.
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Figure 11: Elevation at the stern, hinges, and bow. Sti®ness S = 10¡6. The

wave headings in degrees are shown in the legend with 180± head seas.
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Figure 12: Elevation at the stern, hinges, and bow. Sti®ness S = 10¡8. The

wave headings in degrees are shown in the legend with 180± head seas.
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Figure 13: Elevation at the stern, hinges, and bow. Sti®ness S = 0. The wave

headings in degrees are shown in the legend with 180± head seas.
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Figure 14: Bending de°ection at the midpoint of each module. Sti®ness S =

10¡2.
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Figure 15: Bending de°ection at the midpoint of each module. Sti®ness S =

10¡3.
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Figure 16: Bending de°ection at the midpoint of each module. Sti®ness S =

10¡4.
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Figure 17: Bending de°ection at the midpoint of each module. Sti®ness S =

10¡6.
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Figure 18: Bending de°ection at the midpoint of each module. Sti®ness S =

10¡8.
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Figure 19: Vertical shear force on the hinges. Sti®ness S = 10¡1.
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Figure 20: Vertical shear force on the hinges. Sti®ness S = 10¡2.
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Figure 21: Vertical shear force on the hinges. Sti®ness S = 10¡3.
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Figure 22: Vertical shear force on the hinges. Sti®ness S = 10¡4.
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Figure 23: Vertical shear force on the hinges. Sti®ness S = 10¡6.
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Figure 24: Vertical shear force on the hinges. Sti®ness S = 10¡8.

33


