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The paper describes a process which allows a vertical circular cylinder subject to
plane monochromatic surface gravity waves to appear invisible to the far-field observer.
This is achieved by surrounding the cylinder with an annular region of variable
bathymetry. Two approaches are taken to investigate this effect. First a mild-slope
approximation is applied to the governing linearised three-dimensional water wave
equations to formulate a depth-averaged two-dimensional wave equation with varying
wavenumber over the variable bathmetry. This is then solved by formulating a
domain integral equation, solved numerically by discretisation. For a given set
of geometrical and wave parameters, the bathymetry is selected by a numerical
optimisation process and it is shown that the scattering cross-section is reduced
towards zero with increasing refinement of the bathymetry. A fully three-dimensional
boundary-element method, based on the WAMIT solver (see www.wamit.com) but
adapted here to allow for depressions in the bed, is used to assess the accuracy of
the mild-slope results and then further numerically optimise the bathymetry towards
a cloaking structure. Numerical results provide strong evidence that perfect cloaking
is possible for the fully three-dimensional problem. One practical application of the
results is that cloaking implies a reduced mean drift force on the cylinder.
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1. Introduction

The idea of rendering objects placed in a wavefield to appear invisible to the
far-field observer has been given the name ‘cloaking’. Attempts at cloaking using
absorbing and anti-reflection devices extend back over many decades, mainly applied
to the area of electromagnetic theory. Interest in this subject was re-ignited by the
simultaneous publications of Leonhardt (2006) and Pendry, Schurig & Smith (2006),
both of whom showed the principle of a perfect cloaking mechanism.

Pendry et al. (2006) use the invariance of Maxwell’s equations for electromagnetism
under a change of coordinate system, provided that the material parameters
(permittivity and permeability) are suitably rescaled (Ward & Pendry 1996). Leonhardt
(2006) applied essentially the same principle in a two-dimensional geometric optics
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setting through the use of conformal mappings. The invariance property of the
governing equations allows mappings to be constructed from a problem in which
waves propagate uninterrupted through free space into a problem with a circular
(in two dimensions) or spherical (in three dimensions) inclusion surrounded by an
annular region with varying material parameters. Waves entering the cloak are now
bent around the obstacle rendering it invisible to the observer in the far field.

The concept of cloaking has been applied to other physical wave systems, most
notably to waves in an acoustic medium where a similar mapping technique can be
formulated in both two and three dimensions: see Chen & Chan (2007), Cummer
et al. (2007) and Cummer & Schurig (2007). Now the density and bulk modulus
of a cloaking material surrounding the inclusion must be designed to vary in a
particular manner, determined by the mapping, to deflect waves around the device.
In three-dimensional elasticity, Milton, Briane & Willis (2006) showed that Navier’s
elasticity equations are not invariant under a coordinate transformation although Farhat
et al. (2009) have shown that in thin two-dimensional elastic Euler–Bernoulli plates
a mapping technique can be used to effect a cloaking device.

There is more limited work in the area of cloaking for surface waves on a fluid,
perhaps because the scope for physical application is limited. Farhat et al. (2008)
studied surface waves in the gravity–capillary length scale, using a cloak comprised
of an annular domain containing a large periodic array of small vertical circular
posts. Here, the incident wavelength is large compared to the dimension of the
posts in the cloaking device, though small compared to the inclusion being cloaked.
Established homogenisation techniques are used to capture the effect of the posts
in a continuum model which includes the components of anisotropy required of a
model cloak derived under the transformation technique. Farhat et al. (2008) were
then able to design the structure of the array of posts to achieve the correct radial
behaviour of their anisotropic shear modulus tensor although admitted that an extra
degree of flexibility needed for the design of a perfect cloak, that of radially varying
density, was not possible under the homogenisation model. Nevertheless, experiments
are presented alongside the theory showing the cloak to be effective. Another paper,
Alam (2012), shows how cloaking of an object floating in the surface can be achieved
in a two-dimensional setting in the presence of a two-layer stratified fluid, using a
series of sinuisoidal bottom corrugations to transfer energy from incoming surface
waves into interfacial waves which pass below the surface object before being
transformed back into surface waves by another series of bottom corrugations on the
other side of the object.

In this paper we consider the cloaking of a cylinder by surface waves on a fluid.
Specifically, we consider using changes in the fluid depth as a mechanism for cloaking
a vertical circular cylinder. Thus, it is well known that surface waves are refracted by
changes in depth (see Mei 1983 for example). These effects are often studied using
either a long-wave/shallow-water model or a geometric optics approach (ray theory)
for high-frequency waves. Both approaches remove explicit depth dependence from
the underlying equations of surface waves to leave two-dimensional equations in the
surface. Attempts at using these reduced equations to suggest ways in which either
long waves, or short waves, might be bent around a cylinder have proved unsuccessful.

Further efforts to apply the coordinate transformation method described previously
to the linearised water wave problem also seem unlikely to succeed. There are two
issues. First, although it is possible to envisage a physical problem in which the
depth is anisotropic (for example, the depth profile of the bed could be comprised
of interleaving narrow vertical combs whose profiles in the radial and azimuthal
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directions may be different) the fact remains that the transformation method (whose
map is not area preserving) requires two ‘material’ parameters to be varying in the
domain and here we may only control the depth. Second, whilst the governing field
equation (Laplace’s equation) can be preserved under a conformal mapping of the
horizontal coordinates, the required rescaling of the vertical coordinate implies that
the boundary conditions on the free surface and the bottom bed are not preserved.
This obstacle seems particular to the water wave problem, since lateral boundary
conditions do not exist in the other problems cited previously for other types of
wavefields.

Given the preceding arguments it seems unlikely that a cloak can be designed
for surface waves in a homogeneous fluid by varying the fluid depth. Thus we
have moved back from what is now usually defined as cloaking in which a ‘dead
zone’, devoid of fluid motion and waves, is created and within which an object of
arbitrary shape can be hidden from the far-field observer. Instead, we focus on the
question of whether it is possible to cloak an object of a specific shape having a
specific boundary condition upon its surface. This is analogous to the idea used by
Alù & Engheta (2005), whose work preceded Leonhardt (2006) and Pendry et al.
(2006), who considered cloaking of transverse magnetic/electric (TM or TE) polarised
electromagnetic waves by surrounding a single dielectric layer with given permittivity
and permeability with an annular region of a different (but constant) permittivity and
permeability. Alù & Engheta (2005) showed that, for large wavelength-to-cylinder
ratios, low visibility could be obtained at certain frequencies. They appealed to the
idea that, in this limit, the uncloaked cylinder scattering pattern is predominantly
dipolar and that a destructive interference effect could be introduced by adding
an annular cloaking domain with appropriately chosen dielectric constants. This
idea lends itself well to surface gravity waves which are typically thought of as
long compared to the size of a typical scattering object. We use a vertical circular
cylinder extending throughout the depth as the scattering object, mainly because of its
simplicity, although we are not suggesting that this is the only object that we could
have chosen. Surrounding the cylinder is an annular region of varying bathymetry
which is described by a finite expansion of orthogonal functions in the radial and
azimuthal directions. By allowing more than one degree of freedom in the bed, we
do not restrict ourselves to the low-frequency limit used by Alù & Engheta (2005).
By adjusting the weighting of each component of the bathymetry via a numerical
optimisation process, we aim to lower the scattering cross-section from the uncloaked
cylinder, with a limit of zero representing the perfect cloak.

The outline of the rest of the paper is as follows. In § 2, we give a statement of
the problem of a cylinder surrounded by varying bathymetry. In § 3 an approximation
based on the mild-slope equation (MSE) is described, in which the complexity of
the fully three-dimensional boundary-value problem is reduced by depth-averaging
to a simpler two-dimensional wave equation with a spatially varying wavenumber.
A domain integral equation is derived, adapting recent work by Griffiths & Porter
(2012) to account for the cylinder. Section 4 describes a fully three-dimensional
boundary-element method which is based on an adaptation of the WAMIT solver
(www.wamit.com) to account for depressions in the bed below the depth at infinity.
In § 5 the optimisation procedure used to achieve cloaking is described, and results
are presented for axisymmetric and non-axisymmetric beds.

The inclusion of the approximate MSE model in the paper serves a variety of
purposes. First, it accurately reflects the progression of work that was undertaken on
this problem, being originally instigated by Porter (2011) using MSE before being
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pursued by Newman (2012) using a full linear theory (FLT) to validate and refine the
MSE results. Second, the use of FLT in conjunction with an approximation which,
from a numerical standpoint is completely unrelated, is useful for gathering evidence
to support the existence of cloaking. This is particularly pertinent given that results
from WAMIT are only single precision and, taken by themselves, are not conclusive.
Thus evidence that a different model (albeit approximate) using double-precision code
is able to predict cloaking to a higher degree of accuracy is important.

2. Formulation of the problem
We adopt cylindrical polar coordinates (r, θ, z)≡ (r, z) with z= 0 coinciding with

the mean free surface of the fluid and z pointing vertically upwards. An impermeable
vertical cylinder with constant circular cross-section of radius a is centred along the
z-axis and extends throughout the depth. The sea-bed is defined by z=−h(r) for r>
a. Here h(r) is a continuous function with continuous derivatives, and h(r) = h0, a
constant, for r> b. Thus, the bed is allowed to vary in the annular region a< r< b.

We adopt linearised water wave theory in which the velocity potential is given by
Re{Φ(r, z)exp(−iωt)} where ω is the assumed angular frequency of motion. Then Φ
satisfies

(∇2 + ∂zz)Φ = 0, −h(r) < z< 0, r> a, 0 6 θ < 2π, (2.1)

where ∇= (∂r, r−1∂θ),

Φz −KΦ = 0 on z= 0, r> a, (2.2)

where K =ω2/g, g is gravitational acceleration, and

Φz +∇h · ∇Φ = 0 on Sb := {z= x− h(r), r> a}, (2.3)

which reduces to Φz = 0 on z = −h0 for r > b. On the cylinder, r = ra = (a, θ) we
have

Φr(ra, z)= 0 on Sc := {−h(ra) < z< 0, 0 6 θ < 2π}. (2.4)

An incident wave propagating in the direction β is given by the potential

Φinc(r, z)= exp (ik0r cos(θ − β))w(k0h0, k0z), (2.5)

where
w(p, q)= cosh( p+ q)

cosh p
, (2.6)

and k= k0 is the real positive root corresponding to h= h0 of

k tanh kh=K. (2.7)

The total potential is Φ=Φinc+Φsc where Φsc is a potential representing the scattered
waves which therefore satisfies the radiation condition and hence

Φsc(r, z)∼A (θ; β)
√

2
πk0r

exp (i(k0r−π/4))w(k0h0, k0z) as k0r→∞, (2.8)

where A (θ; β) measures the circular scattered wave amplitude in the direction θ due
to a wave incident in the direction β. The dependence of various quantities on β is
made explicit where later reference is required.
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In order that the cylinder be cloaked it is required that A (θ; β) ≡ 0 for 0 6 θ <
2π. Alternatively, the total energy scattered to infinity (the scattering cross-section)

E = 1
2π

∫ 2π

0
|A (θ; β)|2dθ =−Re{A (β; β)} (2.9)

must be zero. The final equality in (2.9) is a well-known result originally derived by
Maruo (1960) in the water wave context. In other contexts it is known as the optical
theorem.

If h(r)= h0 for all r > a so the bed is flat everywhere, then the exact solution is
well known (e.g. Mei 1983) and given by

Φcyl(r, z)=ψcyl(r; β)w(k0h0, k0z), (2.10)

where

ψcyl(r; β)=
∞∑

n=−∞
in (Jn(k0r)− ZnHn(k0r)) exp (in(θ − β)) . (2.11)

Here Jn and Hn≡H(1)
n are Bessel and Hankel functions, and Zn= J′n(k0a)/H′n(k0a). Thus

the scattering amplitude for the flat bed is given by

Acyl(θ; β)=−
∞∑

n=−∞
Znexp (in(θ − β)) . (2.12)

The total scattered wave energy (2.9) equates to

Ecyl =
∞∑

n=−∞
|Zn|2 =Re

{ ∞∑
n=−∞

Zn

}
, (2.13)

which is independent of β as expected, and never zero.

3. The mild-slope approximation
In this section the problem formulated in § 2 is approximated by employing the

mild-slope method. That is, the potential locally assumes the depth-dependence
assigned to propagating modes over a locally flat bed of the same depth,

Φ(r, z)≈ φ(r)w(kh, kz), (3.1)

in which k(r) = k(h) denotes the positive, real root of (2.7) and the depth, h(r), is
now varying spatially. We follow the implementation of the approximation (3.1) of
Chamberlain & Porter (1995) which uses a variational principle to replace (2.1)–(2.3)
by the single modified mild-slope equation (MMSE), namely

∇ · (u0∇φ)+
(
k2

0u0 + u1∇2h+ u2(∇h)2
)
φ = 0, r> a, (3.2)

where u0(h)= sech2kh(2kh+ sinh 2kh)/(4k) and u1(h), u2(h) are given by Chamberlain
& Porter (1995) but are not required explicitly here. In addition, the boundary
condition (2.4) on the cylinder gives rise, from the variational principle, to the
natural condition requiring∫ 0

−h
w
∂(wφ)
∂r

∣∣∣∣
r=a

dz= 0, 0 6 θ < 2π. (3.3)
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After integrating, this gives the (rather unintuitive) boundary condition on the reduced
potential φ to be

u0φr + u1hrφ = 0 on r= a. (3.4)
This condition is overlooked in later work of Chamberlain & Porter (1999) and also
in Porter (2011), but is taken into account in a recent paper of Liu, Wang & Tang
(2013).

A transformation of (3.2) into its canonical form is achieved by writing

φ(r)= {u0(h0)/u0(h(r))}1/2 ψ(r), (3.5)

upon which ψ can be shown to satisfy (e.g. Griffiths & Porter 2012)

∇2ψ + κ(r)ψ = 0, r> a, (3.6)

where
κ(r)= k2

0 + A(h)∇2h+ B(h)(∇h)2, (3.7)
and A(h), B(h) are now functions of u0, u1 and u2 whose definitions can be found in
Griffiths & Porter (2012). Application of (3.5) to (3.4) leads to the boundary condition

ψr + hrA(h)ψ = 0 on r= a, 0 6 θ < 2π. (3.8)
Finally we mimic the decomposition of Φ by writing ψ(r) = ψinc(r) + ψsc(r) where
ψinc(r)= exp (ik0r cos(θ − β)), and

ψsc(r)∼A (θ; β)
√

2
πk0r

exp(i(k0r−π/4)). (3.9)

We briefly remark that the reduced potential ψcyl defined in (2.11) and used to express
the solution of the exact scattering by a circular cylinder on a flat bed is also (and
unsurprisingly) an exact solution of the MMSE with A (θ; β) replaced by Acyl(θ; β)
as defined in (2.12).

We now follow closely the method described in Griffiths & Porter (2012),
reformulating the wave equation (3.6) into an integral equation using a Green function
G(r; r′) satisfying

(∇2 + k2
0)G= δ(r− r′), (3.10)

with r′ representing the field point (r′, θ ′) and Gr(ra; r′)= 0. It can readily be shown
that

G(r; r′)=− i
4

H0(k0ρ)+ i
4

∞∑
n=−∞

ZnHn(k0r)Hn(k0r′)exp
(
in(θ − θ ′)) , (3.11)

where ρ2 = |r− r′|2 ≡ r2 + r′2 − 2rr′ cos(θ − θ ′) and with Zn defined following (2.11).
The result of applying Green’s identity to ψ − ψcyl and G over the infinite domain
r> a, 0 6 θ < 2π is

ψ(r′)+
∫∫

D

[
κ(r)− k2

0

]
G(r; r′)ψ(r) rdrdθ

−
∫ 2π

0
A(h(ra))hr(ra)G(ra; r′)ψ(ra) adθ =ψcyl(r′; β) (3.12)

for |r′| > a, where ψcyl is defined by (2.11) and D := {a < r < b, 0 < θ < 2π} is
the projection of the varying bed Sb onto the (r, θ)-plane. The boundary integral on
∂D := {r= a, 06 θ < 2π} appears during the application of (3.8). Thus (3.12) serves
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as an integral equation for the unknown ψ when r′ is restricted to D∪ ∂D and defines
ψ beyond D once ψ is known in D∪ ∂D.

Taking k0r′ → ∞ allows us to access the far-field behaviour of ψ which, in
comparison with (3.9), gives

A (θ ′; β) = Acyl(θ
′; β)+ i

4

∫∫
D

[
κ(r)− k2

0

]
ψcyl(r; θ ′ +π)ψ(r) rdrdθ

− i
4

∫ 2π

0
A(h(ra))hr(ra)ψcyl(ra; θ ′ +π)ψ(ra) adθ, (3.13)

where Acyl is defined by (2.12). In deriving the above, we have made use of the
leading-order large-argument expansion of the Hankel function in (3.11).

The strategy is to determine solutions ψ(r) over r ∈ D ∪ ∂D from (3.12) and use
these solutions to calculate A (θ ′; β) from (3.13). Finally, the scattering cross-section
E can be found using (2.9).

Solutions to (3.12) are approximated numerically using a discretisation approach
similar to that described by Griffiths & Porter (2012, § 4.2), thereby allowing the
scattering coefficients to be approximated from (3.13). The approximation method is
unsophisticated and uses piecewise-constant values for the unknown ψ on an N by
M polar grid over the annular domain D ∪ ∂D. However, the approximation to the
integral equations is based on Galerkin’s method, and therefore converges rapidly with
increasing values of N and M. An added consequence of using Galerkin’s method is
that (2.9) is satisfied automatically to machine precision for any values of M and N.
However, the procedure is still numerically intensive, requiring the inversion of full
MN × NM matrices. Symmetries in the bathymetry can be exploited to reduce the
domain of the integral equation to a quarter of its original size and this improves the
numerical efficiency.

When the bathymetry is axisymmetric the MSE problem can be reformulated by
expanding the azimuthal variation of both unknown quantities and Green functions
into Fourier modes. This leads to an infinite series of simpler one-dimensional integral
equations for each azimuthal mode which involves non-singular Green functions. This
is easier to code and significantly quicker computationally than the non-axisymmetric
counterpart, exhibiting rapid convergence with increasing terms in the series, and
has been used for all computations involving axisymmetric beds. It also allows the
MSE results to be validated against the full system when axisymmetry has not been
assumed. Results have also been validated against those produced by the method of
Griffiths & Porter (2012) for the case of no cylinder, by letting the radius of the
circular cylinder shrink towards zero. Further validation against fully three-dimensional
calculations will follow in § 5.

4. Fully three-dimensional calculations
In a fluid of constant depth the scattering characteristics of a body can be analysed

using the panel method (see, for example, Lee & Newman 2004). A boundary-integral
equation for the unknown velocity potential is derived, using the Green function which
satisfies the boundary conditions on the free surface and bottom and the radiation
condition in the far field. The domain of the integral equation is restricted to the
submerged surface S of the body. After discretization the integral equation is reduced
to a linear system of algebraic equations. This method can be extended to cases with
variable bathymetry where h(x, y) 6 h0, by extending S to include Sb, the bottom
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in the region of varying depth. Ferreira & Newman (2009) used this approach to
analyse wave effects on a ship above a sloping bottom. However it cannot be used if
h(x, y) > h0, as is the case for bathymetry suggested by results indicated by the MSE
approach later in § 5, since the Green function which satisfies the boundary condition
on z=−h0 is singular if z<−h0. This restriction could be avoided by using a different
Green function, e.g. corresponding to the maximum depth or infinite depth, but the
resulting computational domain would include the entire bottom extending to infinity.
Instead we consider a more efficient approach based on domain decomposition, with
a matching boundary between the interior domain with variable bathymetry and the
exterior domain with constant depth. Matching boundaries have been used for a variety
of wave–body problems, especially for cases involving thin vertical barriers and bodies
with vertical sides. Belibassakis (2008) and Pinkster (2011) have used matching with
panel methods to analyse problems with other types of bathymetry.

Two domains Di (i= 0, 1) are considered, with the corresponding velocity potentials
denoted by Φ(i). The exterior domain D0 extends to infinity, with constant depth h0.
In the interior domain D1 the depth h(x, y) is arbitrary, except that it must match the
depth h0 on the matching boundary, Sm. The boundary surface of D1, not including the
free surface, is S1 = Sc ∪ Sb ∪ Sm where Sc denotes the wetted surface of the vertical
cylinder and Sb represents the varying bed within D1. The potential Φ(0) includes the
incident wave Φinc defined by (2.5) and the scattering component Φsc which satisfies
the radiation condition in the far field given by (2.8). The matching boundary Sm
separates the two domains, extending from the bottom z = −h0 to the free surface
z= 0. The unit normal is defined to point out of the domain Di on its boundary.

Green’s second identity is applied separately in each domain. Thus for field points
x on the boundary surface Si,

2πΦ(i)(x)+
∫∫

Si

(
Φ(i)(ξ)

∂G(i)(ξ ; x)
∂nξ

−G(i)(ξ ; x)∂Φ
(i)(ξ)

∂nξ

)
dSξ

=
{

4πΦinc(x), i= 0,
0, i= 1.

(4.1)

Here G(1)(ξ ; x) is any Green function which is regular within D1 (except at the
source point ξ , where G(1) ∼ 1/|ξ − x|), and satisfies the free-surface condition. For
simplicity the conventional free-surface Green function for infinite depth is used. G(0)

is the Green function for finite depth, h0. For the specification of both types of Green
function see Mei (1983). The term 4πΦinc is included on the right-hand side since
Φ(0) does not satisfy the radiation condition.

On Sb and Sc (2.3) and (2.4) hold and so the normal velocity Φ(1)
n = 0, where the

subscript n denotes the normal derivative. The appropriate boundary conditions on
Sm are Φ(0) = Φ(1) and Φ(0)

n = −Φ(1)
n , expressing continuity of pressure and normal

velocity respectively. Using (4.1), writing separate equations for the two domains and
invoking the boundary conditions on Sm gives the following three equations:

2πΦ(1) +
∫∫

Sb∪Sc

Φ(1)G(1)
n dSξ +

∫∫
Sm

Φ(0)G(1)
n dSξ +

∫∫
Sm

G(1)Φ(0)
n dSξ = 0, (4.2)

2πΦ(0) +
∫∫

Sb∪Sc

Φ(1)G(1)
n dSξ +

∫∫
Sm

Φ(0)G(1)
n dSξ +

∫∫
Sm

G(1)Φ(0)
n dSξ = 0, (4.3)

2πΦ(0) +
∫∫

Sm

Φ(0)G(0)
n dSξ −

∫∫
Sm

G(0)Φ(0)
n dSξ = 4πΦinc, (4.4)
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where (4.2) is applied on x ∈ Sb ∪ Sc, and (4.3), (4.4) on x ∈ Sm. In the above
equations, arguments have been dropped so that G(i)

n is shorthand for ∂G(i)(ξ ; x)/∂nξ .
The unknowns in (4.2)–(4.4) are Φ(1) on Sb ∪ Sc and Φ(0), Φ(0)

n on Sm. The coupled
integral equations (4.2)–(4.4) are discretised and solved using a modified version
of the panel code WAMIT. The higher-order method is used, with the unknowns
represented by B-splines as explained by Lee & Newman (2004). The surfaces Sb
and Sc are represented by explicit formulae and Sm is defined to be a circular cylinder
of radius b, as in the previous section.

Using Φ(0) and the function exp(−ik0r cos(θ − θ ′))w(k0z, k0h0) in Green’s second
identity applied to the domain D0 which extends to infinity, the following relation for
the far-field scattering amplitude can be found:

A (θ ′;β)=− igk0

4ωvg

∫∫
Sm

(
Φ(0)

n −Φ(0) ∂

∂n

)
cosh (k0(z+ h0))

cosh(k0h0)
exp
(−ik0r cos(θ − θ ′)) dS,

(4.5)
where vg is the group velocity in depth h0. In terms of the Kochin function H(θ)
(e.g. Wehausen & Laitone 1960) the relation H(θ)= 2iA (θ; β) holds.

Once A (θ; β) has been computed from (4.5), the total scattered energy in waves
radiated to infinity is computed from (2.9).

5. Numerical results
5.1. The bathymetry and cloaking procedure

We are interested in the ‘cloaking factor’

C = E

Ecyl
, (5.1)

where Ecyl defined by (2.13) is the scattering cross-section for a flat bed and E is
defined for the variable bathymetry by (2.9) with A defined by (3.13) under the
MSE approximation and (4.5) for fully three-dimensional computations. When C < 1,
the cylinder with the cloaking region containing the variable bathymetry scatters less
energy than with a flat bed. Perfect cloaking requires C = 0.

In order to consider varying bed shapes of a general form, the depth h(r, θ) is
defined by a Fourier–Chebychev basis with

h(r, θ)= h0 +
P∑

p=1

Q∑
q=1

αp,q fp(r) cos(2(q− 1)θ), (5.2)

where

fp(r)= 1
2

T2p

(
b− r
b− a

)
− 1

2
(−1)p, (5.3)

and Tn(·) are orthogonal Chebychev polynomials. The particular choice in (5.3)
ensures that h(b, θ) = h0 and hr(b, θ) = 0 as required by the MSE approach. The
reasoning behind the choice of Chebychev polynomials is that more refinement in the
bed was expected as the cylinder is approached. Our results support this hypothesis.
The expansion in θ dictates that the bed shape is symmetric about both planes θ = 0
and θ = π/2. We have assumed that the objective is to cloak for an incident wave
angle of β = 0 and this is most likely to be successful if symmetry is assumed in the
bathymetry about the plane θ = 0. Symmetry of the bathymetry in the plane θ =π/2,
perpendicular to the assumed wave direction, is motivated by the following argument.
Suppose a bathymetry cloaks the cylinder for waves from one direction such that the
incident wavefield is perfectly reconstructed downwave of the cylinder and there are
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FIGURE 1. Comparison of C against k0h0 computed using MSE (solid lines) and FLT
(crosses) for axisymmetric beds with one radial basis mode: (a) α1,1 = 0.1, 0.2, 0.4, 0.8;
(b) α1,1 = 0, α2,1 = −0.1, −0.2, −0.4. In both examples, C increases with increasing
magnitude of the coefficients.

no outgoing circular diffracted waves. Assuming that this solution is described by
Φ, consider now the problem described by the complex-conjugate potential Φ. This
satisfies all of the conditions of the original problem apart from that the incident wave
has reversed direction and hence the reflection of the original cloaking bathymetry
about the plane θ =π/2 must also be a cloaking bathymetry. If a cloaking bathymetry
were unsymmetric about θ = π/2, then a second independent cloaking bathymetry
would be guaranteed by this argument. This seems unlikely although we do not rule
this possibility out. It has also been confirmed numerically that the contribution from
odd cosine modes plays a negligible role in reducing the value of C .

Before considering attempts at cloaking, the results from the MSE and FLT are
compared for simple bed shapes. In figure 1(a,b) the variation of C is shown against
k0h0 for axisymmetric beds (Q= 1) with a/h0 = 1/2, b/h0 = 5. In figure 1(a) P= 1
has been chosen with α1,1 = 0.1, 0.2, 0.4, 0.8. Figure 1(b) shows results for P = 2,
α1,1=0, α2,1=−0.1,−0.2,−0.4. A log scale on the vertical axis helps separate results
in each figure. The computations from the MSE and FLT are in good agreement,
with only small differences emerging for steeper beds and small values of k0h0.
These observations are consistent with the range of validity of the MSE and other
comparisons between the MSE and FLT (see, for example, Ehrenmark 2005).

The procedure used to find the bed shapes leading to the lowest value of C
is now described. In (5.2) the PQ weighting coefficients, αp,q, are considered free
variables in a numerical optimisation procedure whose objective function is the
cloaking factor, C . Thus the procedure aims to find the minimum value of C
over all αp,q in PQ-dimensional space. For the MSE results, the optimisation has
been performed using the NAG routine E04JYF, a quasi-Newton algorithm. For
the FLT results, a freely available well-documented piece of software PRAXIS
(http://people.sc.fsu.edu/∼jburkardt/f77_src/praxis/praxis.html) based on the popular
algorithm described by Brent (2002) has been used. Both routines minimise a scalar

http://people.sc.fsu.edu/~jburkardt/f77_src/praxis/praxis.html
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function of several variables without needing to calculate derivatives explicitly.
Both codes require initial guesses for the vector input and, like all minimisation
routines, the minimisation can be sensitive to that initial guess, especially for
higher-dimensional parameter spaces.

The principle strategy to be adopted, and applied to the MSE approach initially,
involves increasing the number of free variables (hence P and Q) in small increments
starting with P=Q= 1 where the optimisation is easily performed. At each increment
in P and/or Q the optimiser is initialised with the set of coefficients αp,q derived
from the previous optimisation, with additional coefficients set to zero. This strategy
clearly implies that C is set on a decreasing path. If one were to assume a classical
convergence of this scheme, one might expect the increments in the degrees of
freedom at each step of the optimisation to have a smaller and smaller effect on
coefficients determined by the previous step and that, in this way, it is easy for the
optimiser to find the new minimum at each stage of the process. However, we find
that this is not always the case. As the number of free variables, and hence the
size of parameter space, is increased multiple local minima emerge and the global
minimum can reside in a completely new part of parameter space. The manner in
which this happens is not easy to identify or analyse and thus we find ourselves
supplementing the procedure described above with a combination of other somewhat
ad hoc approaches aimed at locating global minima and hence the solution with the
lowest C . These are referred to at various points in the description which follows.

5.2. Axisymmetric beds
In the original numerical experiments of Porter (2011) and Newman (2012) the
possibility of using axisymmetric beds was overlooked because they were not
considered likely candidates for cloaking. Whilst the best cloaking results will
be shown to be associated with non-axisymmetric beds, it is a more natural starting
point to consider axisymmetric beds first. With axisymmetry, Q= 1 and the results are
independent of the incident-wave angle β. We fix k0h0 = 1 and a/h0 = 1/2, b/h0 = 5
and increase P in steps. When P= 1 and α1,1 is the only free weighting coefficient
figure 1(a) shows that C < 1 for k0h0 = 1 with α1,1 = 0.1 and that there is close
agreement between the MSE and FLT results. We find that α1,1 ≈ 0.11 minimises C
to a value of approximately 0.83. The results of the optimisation procedure for Q= 1
and increasing P = 2, 4, 8 are summarised in the first three rows of table 1. This
table includes two calculations of C performed under FLT corresponding to the two
definitions in the right-hand side and middle parts of (2.9). The difference between
these two results, shown in the final column of table 1, act as an indicator of the
accuracy of the results using the single-precision WAMIT solver, a point we return
to shortly. For FLT, we use the maximum computed value of the two versions of E
defined in (2.9) as the objective function to be minimised and subsequently report
just the maximum of the two versions of CFLT . From table 1 both the MSE and FLT
cloaking factors are seen to decrease as P is increased. However the values of αp,1
to which the optimiser converges can be quite different, especially for larger P.

At this point we note that the WAMIT solver which is used to implement the
boundary-element method for the FLT uses single-precision code. The differences in
the values of CFLT computed by the two different methods shown in table 1 can be
used to indicate the level of accuracy of the computations. Given these data, and the
fact that C is defined as a factor normalised by Ecyl=0.090 372, it is difficult to justify
reporting values of C below approximately 0.00 001.



Cloaking of a vertical cylinder in waves 135

Q P CMSE CFLT(1) CFLT(2) (1)–(2)

1 2 0.528 46 0.422 80 0.423 15 −0.000 35
1 4 0.050 79 0.023 43 0.023 61 −0.000 18
1 8 0.000 86 0.000 06 0.000 64 −0.000 58
2 2 0.180 27 0.112 07 0.112 31 −0.000 24
2 4 0.046 48 0.015 23 0.015 34 −0.000 11
2 8 6× 10−6 0.00008 0.000 05 0.000 03
4 2 0.092 56 0.064 25 0.064 49 −0.000 24
4 4 1× 10−5 0.003 69 0.003 79 −0.000 10
4 8 1× 11−11 0.000 01 0.000 03 −0.000 02

TABLE 1. Cloaking factors optimised under MSE and FLT with varying numbers of radial
(P) and azimuthal (Q) basis modes. Here a/h0 = 1/2, k0h0 = 1, b/h0 = 5. The first three
rows (Q= 1) are axisymmetric beds. Columns labelled (1) and (2) indicate CFLT computed
using the first and second alternative relations of (2.9) respectively; the final column shows
the difference between them.

We need also to note our experiences of using the MSE numerical method. Despite
being written using a double-precision code, like WAMIT it too uses a grid-based
discretisation upon which results are dependent. As previously stated, (2.9) is satisfied
automatically in the MSE method and cannot be used to gauge the accuracy of the
results. In numerical experiments it was found that increasing the refinement of the
grid could affect the expansion coefficients found under optimisation quite significantly
but that optimised values of C were much more robust to changes in discretisation.
For example, if C was found to be O(10−11) for one discretisation, doubling the grid
refinement would still result in a value for C of O(10−11) even though the value of
the expansion coefficients for the bed might have changed by as much as O(10−3).
Given our experiences we feel comfortable reporting the levels of accuracy for CMSE
in table 1.

In figure 2(a–c) we show the radial depth profiles for cloaking-optimised
axisymmetric beds under MSE and FLT for Q= 1, P= 2, 4, 8 modes, corresponding
to the data in table 1. The bed profiles show reasonably good agreement for 2 and
4 radial modes. When P = 8 is used, the FLT finds a local minimum C = 0.0065
when the optimiser is initialised with the MSE coefficients, which is a fairly close
fit to the MSE-optimised bed. However, the FLT optimiser finds a lower value of
C = 0.0006 when initialised with P= 4 FLT-optimised coefficients. It is believed that
this represents the global minimum. In the MSE optimisation, the same minimum
value is found irrespective of the initialisation of the coefficients.

Despite the superficial similarity in shape of the optimised MSE and FLT bed
profiles shown in figure 2(a–c) the values of C computed from one approach using
coefficients optimised under the other approach are not always so close. For example,
with Q= 1, P= 4, the value of C computed using FLT with the coefficients optimised
under MSE is 0.194, an order of magnitude higher than the optimised value of CFLT
shown. This illustrates the sensitivity of C to the bed shape and partly explains
why the optimised cloaking factors and bed shapes predicted by the MSE method
can appear such a long way from those computed under FLT, especially for more
complicated bed shapes.

Figure 2(a–c) indicates that the introduction of new degrees of freedom in the
optimisation procedure allows the optimiser to locate completely different looking
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FIGURE 2. Radial depth profile of axisymmetric beds optimised under MSE (solid line)
and FLT (dashed) for Q = 1 and (a) P = 2, (b) P = 4, (c) P = 8; a/h0 = 1/2, b/h0 = 5,
k0h0 = 1. The coefficients and values of C are shown in table 1. In (c) local and global
minima under FLT are shown. In (d) we show just MSE-optimised beds for P= 8 (dotted)
P= 10 (short dashed) P= 12 (long dashed) P= 16 (solid).

bed shapes. In figure 2(d) beds optimised under the MSE method are shown for
P= 8, 10, 12 and 16 modes. The value of C drops to under 10−7 for P= 12 and less
than 10−11 for P = 16. These optimised beds for larger values of P perform poorly
under FLT, the increasing oscillations in the bed leading to higher bed gradients
where the MSE approximation becomes less accurate. However, figure 2(d) does
suggest that bed shapes do eventually converge with increasing P although it is not
clear if these beds are optimised to a local minimum. Increasing P under FLT to a
value of P = 16 reduces only slightly the optimised value of CFLT from its P = 8
value. There are a number of reasons why this might happen. It could be that CFLT
reaches a non-zero limit as P increases and perfect cloaking by axisymmetric beds
is not possible. Or it could be that the optimiser for P= 16 has not found a global
minimum. Or it might be that the computation of CFLT is obscured by numerical
inaccuracies.

Figure 3 shows curves of C , for the beds optimized at k0h0 = 1, for a range of
values of k0h0. Results are shown for the P= 2, 4, 8 axisymmetric beds as displayed
in figure 2. Despite having found that values of C are very sensitive to the bed shape,
once a near-cloaking bed shape has been fixed by a minimisation of C for a particular
wavenumber (k0h0= 1 in these cases) the curves in figure 3 illustrate that the cloaking
factor is reduced well below unity across a significant range of wavenumbers.

We next consider the effect of the size of the annular cloaking domain. Now Q= 1,
P= 8, a/h0 = 1/2 are fixed and the axisymmetric beds are optimised for cloaking at
k0h0=1 as before. Figures 4(a) and 4(b) show the beds optimised under MSE and FLT
respectively (note the vertical scales are different) for different values of b/h0. The
curves in these two figures have the same generic bed shape in the outer half of the
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FIGURE 3. Cloaking factor against k0h0 for axisymmetric beds optimised by (a) MSE
and (b) FLT with Q= 1, a/h0 = 1/2, b/h0 = 5. Curves show varying radial modes: P= 2
(solid), P= 4 (long dashed) and P= 8 (short dashed).

b/h0 CMSE CFLT

6 0.005 90 0.020 44
5 0.000 86 0.001 22
4 0.000 02 0.000 28
3 0.000 29 0.000 02
2 0.098 40 0.011 43

TABLE 2. Cloaking factors optimised under MSE and FLT for axisymmetric beds with
varying cloaking domain radius, b/h0. Here a/h0 = 1/2, k0h0 = 1, Q= 1, P= 8.

domain although, as discussed previously, the coefficients optimised under MSE are
quantitatively quite different from those optimised under FLT. The detail in the beds
close to the cylinder is very different and often associated with larger bed gradients
where MSE accuracy breaks down.

The minimised cloaking factors associated with each of the optimised beds in
figure 4(a,b) for MSE and FLT are shown in table 2. Again, cloaking factors for
MSE and FLT do not show much quantitative agreement due to the sensitivity of
cloaking to the model and the bed shape. However, they do share the feature that
there is a minimum value of C , in this case where the number of radial modes
is fixed at P = 8, for a value of b/h0 in the range from 2 to 6. In particular, the
cloaking factor using FLT is reduced to a value at the practical limit of the WAMIT
solver for b/h0 = 3.

Figure 5 mirrors figure 3 in that it shows the variation of C with k0h0, for beds
with b/h0 = 2, 3, 4, 5, 6, optimised under both MSE and FLT. As before it confirms
that there is a reduction in C over a significant range of values of the wavenumber.

In practical applications to offshore structures the mean drift force is an important
physical parameter. This is a second-order quantity which measures the time-averaged
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FIGURE 4. Radial depth profiles of axisymmetric beds optimised by (a) MSE and (b) FLT
for Q= 1, P= 8 with a/h0 = 1/2, k0h0 = 1, for five different values of the bed radius b.

pressure force on the scattering surface. Since it can be calculated from the momentum
flux in the far field, there is a connection between the mean drift force and the
radiated wave amplitude (cf. Mei 1983, § 7.10, (10.21)). Thus perfect cloaking of
the cylinder by the undulating bed implies a zero mean drift force on the combined
surfaces of the cylinder and the bed. This is illustrated in figure 6(a), which shows
the drift force on the cylinder and bed, normalized by the corresponding force
on the uncloaked cylinder, for the optimized beds with cloaking factors shown in
figure 5(b). The drift force is practically zero at k0h0 = 1, and it is reduced relative
to the uncloaked cylinder over a significant range of wavenumbers. As in the case
of the scattering energy, the total mean drift force on the cylinder and the bed is
positive-definite, but the drift force on the cylinder alone can be negative as shown
in figure 6(b), with a compensating positive force on the bed.
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FIGURE 5. Cloaking factor against k0h0 for axisymmetric beds optimised by (a) MSE and
(b) FLT with Q= 1, P= 8, a/h0 = 1/2. Curves show: b/h0 = 6 (long dashed); 5 (solid);
4 (short-dashed); 3 (dotted); 2 (chained).

5.3. Non-axisymmetric beds
The results in the previous section show that the cloaking factor can be reduced to
values close to zero when the bed is axisymmetric. Whilst the MSE results appear to
indicate that C will continue towards zero as more degrees of freedom are allowed
in the bed shape, the FLT results are less clear in this respect. There is certainly no
obvious mathematical or physical explanation as to why perfect cloaking should occur
with purely axisymmetric bathymetry. Indeed, the low cloaking factors obtained for
axisymmetric beds could be regarded as unexpected, hence the reason they were not
considered in the earlier studies of Porter (2011) and Newman (2012).

We therefore continue to gather evidence for cloaking by considering non-
axisymmetric beds. Our focus continues on the same example of a/h0= 1/2, b/h0= 5
and cloaking at k0h0 = 1, but now Q> 1.

In particular, combinations of values of P = 2, 4, 8 and Q = 2, 4 have been
considered using both the MSE and FLT. The objective for each set of values of
(Q, P) considered is to find the lowest valid value of C using different initial values
of the coefficients αp,q. These initial values were chosen in many different ways to
attempt to find the lowest minimum. One approach uses previously optimised sets of
coefficients with smaller values of Q or P (or both). Another uses the MSE-optimised
coefficients to initialise an optimisation for the FLT. Occasionally the best results were
found by initialising αp,q= 0 for all p, q. The results also had to be carefully analysed.
In some cases, optimisation of C corresponds to large values of αp,q which describe
beds with large-amplitude oscillations. In other cases, the optimised beds would
approach the free surface and the optimisation is stopped.

Results for non-axisymmetric beds are tabulated in the lower section of table 1.
Both the MSE and FLT show that the extra degrees of freedom in the bed provided by
angular variations lead to a reduction in the cloaking factor. This reduction is generally
much more modest with increasing Q than was found with increasing P.
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FIGURE 6. Mean drift force F̄, normalized by the corresponding force on the uncloaked
cylinder for the optimised axisymmetric beds with Q= 1, P= 8, a/h0= 1/2. Curves show:
b/h0= 6 (long dashed); 5 (solid); 4 (short-dashed); 3 (dotted); 2 (chained). The total force
acting on the cylinder and bed is shown in (a) and the component acting on the cylinder
is shown in (b). Values less than one imply a reduced value of the drift force compared
to the uncloaked cylinder.

Bearing in mind the reservations set out concerning the accuracy of FLT
computations, the results for (P, Q) = (2, 8) and (4, 8) in table 1 do seem to
provide a stronger indication of perfect cloaking. As mentioned above, the value of
0.00 001 is at the limits of the estimated accuracy of the FLT code, and it is not
possible to say whether the true value may actually be even smaller than this.

Figure 7 shows four bed shapes with the same dimensions, which are optimised
using FLT. The number of Fourier/Chebychev coefficients and minimum value of C
are shown for each bed. The cylinder is shown in the centre of each plot, which is
cut away to show the profiles of the beds in the θ = 0 and θ =π/2 planes. The outer
cylindrical boundary is not a physical boundary but the boundary over which the inner
and outer regions are matched in the boundary-integral method; it coincides with the
outer circle of radius b.

Further numerical experiments carried out, but not reported here, consider cloaking
for different values of a/h0 and k0h0. It is found that the optimisation procedure of
cloaking described here is robust to changes in these values. As k0a is reduced below
the value of unity, considered in this paper, cloaking factors reduce towards zero
faster with increasing Q, P and vice versa. The undulating bathymetry acts to scatter
waves in order to destructively interfere with the waves scattered by the cylinder. For
lower values of k0a the scattering by the cylinder is dominated by the coefficients of
the lower Fourier mode expansion in θ . Thus, it is perhaps not surprising that the
undulating bed needs less refinement.

Figure 8 shows the scattered energy E for the FLT-optimised bed shown in
figure 7(d) (P = 8, Q = 4) for a range of wavenumbers and different angles of
incidence between zero and 90◦. (Since the bed possesses planes of symmetry
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FIGURE 7. (Colour online) Perspective views with cut-aways of non-axisymmetric beds
optimised under FLT. The outer cylinder in each figure is the matching boundary Sm as
defined in § 4. Values of (Q,P) are shown in brackets. Here a/h0=1/2, b/h0=5, k0h0=1.

these results extend to all four quadrants of incidence angles.) The scattered energy
of the cylinder in a uniform depth is also shown, for comparison. The scattered
energy is substantially reduced for wavenumbers less than approximately 1.3, and
the dependence on the incidence angle is relatively weak. Similar results have been
obtained for the case P= 8, Q= 2, with somewhat more dependence on the angle of
incidence at lower k0h0.

6. Conclusions
Numerical evidence has been provided showing that the incident wave energy

scattered in diffracted waves by a vertical cylinder over a flat sea bed can be reduced
towards zero when the bathymetry in an annular region outside the cylinder is
allowed to vary. Results presented here focus initially on axisymmetric beds where
this ‘cloaking effect’ is independent of incident wave direction and where bed profiles
are easier to compute, visualise and possibly construct in an experiment. However,
much lower cloaking factors have been obtained in computations performed on
non-axisymmetric beds suggesting that perfect cloaking requires such bed forms. Two
approaches have been described, the first approximate and based on an implementation
of the depth-averaged modified mild-slope equations. Numerical optimisation results
from this approximation are then used as initial guesses in a method based on
full three-dimensional linearised theory. This has required a modification to the
boundary-element code WAMIT to account for depressions in the annular cloaking
region below the depth of the bed at infinity. In the best example of cloaking under
FLT we have produced a reduction in the total scattering cross-section of 10−5 over
that for a cylinder on a flat bed. This computation is at the practical limit of the
program accuracy and it is tempting to conclude that the cloaking factor could be
reduced indefinitely towards zero with increasing refinement in the bed shape. This
is supported by the results using MSE.

The focus here has been on one particular example of cylinder size a/h0= 1/2 and
wavelength k0h0 = 1. With these fixed values, it has been shown that near-cloaking
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FIGURE 8. Scattered energy E for the cloaking-optimised non-axisymmetric bed shown
in figure 7(d) (a/h0 = 1/2, b/h0 = 5, k0h0 = 1) for incident wave angles: β = 0 (solid);
β = 30◦ (long dashed); β = 60◦ (short dashed); β = 90◦ (dotted).

occurs for different sizes of the cloaking region b/h0, in each case with the scattered
energy reducing towards zero as the description of the bed shape is increased in
refinement. Within these values there is evidence that there are particular values
of b/h0 which minimise the scattering cross-section at a faster rate with increasing
modes describing the bed. It could have been possible to include b/h0 as an additional
free parameter in the optimisation procedure to further refine the cloaking process.

It has also been shown that the mean drift force on the cylinder is reduced by
cloaking-optimised beds across a significant range of frequencies around the cloaking
frequency. This could have some practical significance in the design, for example, of
offshore wind turbine foundations.

Further work on cloaking includes replacing the varying bed by other scattering
obstacles (Newman 2013). The use of optimisation routines to design marine structures
having particular characteristics could be useful in other applications, for example in
wave energy capture (e.g. Kurniawan & Moan 2012).
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