
 
 
 
 
 
 

Report 
 

2005 Annual WAMIT Consortium Meeting 
 

  
 
 
 
 
 
 
 
 

 
 
 

 
October 18-19, 2005 

 
Woods Hole, Massachusetts 

 
 
 
 
 
 
 
 

 



Agenda for 2005 Annual WAMIT Meeting  
Room 310, Marine Resource Center, Swope Center, Woods Hole, MA 
 
October 18: 
 
9:00AM: Welcome 
 
9:20AM: " Recent updates and preview of WAMIT V6.3" 
                  C.-H. Lee, WAMIT 
 
10:00AM: "Evaluation of quadratic forces using control surfaces" 
                  C.-H. Lee, WAMIT 
 
10:40AM: Break 
 
11:00AM: "Effect of tanks or springs on mean drift forces" 
                    J. N. Newman., WAMIT   
         
11:30AM: "Notes on the use of artificial lid for the analysis of two-bodies  
                   interaction" 
                   C.-H. Lee, WAMIT 
 
12:00PM: Lunch 
 
1:30PM:  “Computational aspects of side by side offloading in waves” 
                 P. Teigen, Statoil  and J.M. Niedzwecki, OTRC 
 
2:15PM:  “Modelling problems related to the Snoehvit in-docking operation” 
                 P. Teigen, Statoil 
 
3:00 PM: Break 
 
3:30 PM:  “Summing linear and 2nd-order wave elevations using FS_ELV" 
                  C.-H. Lee, WAMIT 
 
5:30PM: Mixer and Dinner 
 
October 19: 
 
9:00AM: Technical discussion  
 
10:30AM: Break 
 
10:50AM: Business meeting 
 
12:00AM: Lunch 



 
 

 
 
Contents 
 
  

1. Recent Updates and WAMIT V6.3 
 

      2.   Evaluation of quadratic forces using control surfaces 
 

      3.   Notes on the use of artificial lid for the analysis of two-bodies  
      interaction 
4.   Summing linear and 2nd-order wave elevations using FS_ELV 

 
5 Current Participants 

   
6 Appendices  

 
    Nonlinear wave interaction with a square cylinder  

- B. Molin, E. Jamois, C.H. Lee &  J.N. Newman 
          Wave effects on vessels with internal tanks  –J. N. Newman 
          Evaluation of quadratic forces using control surfaces– C.-H. Lee 
          Notes on the use of artificial lid for the analysis of two-bodies interaction -C.H. Lee 
          Summing linear and 2nd-order wave elevations using FS_ELV –C.-H. Lee 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 



Recent updates and preview 
of WAMIT V6.3



Updates in V6.3

An option to accurate evaluation of the mean 
drift forces using control surface  is added

Any quadrants/halves of body geometry can 
be input when body has symmetric planes

Thin flat elements can be specified at x=0 or 
y=0 plane without loosing symmetry.



Mean drift force by control surface
The mean drift force/moment are evaluated by 
evaluating momentum flux on the control surface.

The method provides as accurate results as far field
momentum drift force (IOPTN.8). Thus the method
can replace the pressure integration (IOPTN.9) when
the latter must be used such as in the multiple body
interaction.

The control surface, CSF, should be specified as an 
input in the similar manner as GDF.  



Control surface encloses the body. It includes free 
surface portion if the vertical components is of interest



It is simple to create CSF as all available GDF input 
option can be used for CSF. 

Low-order method: Flat panels
Higher-order method: Flat panels

B-splines
MultiSurf patches
Exact geometry

*If vertical component is not of interest and WAMIT may 
generate CSF internally for most arrangements.



The pressure (or momentum flux) on CS are integrated 
in piecewise manner for low-order method or based on 
Gauss-quadrature in higher-order method

The accuracy of the integration over control surface is 
determined by the number of panels in the low-order 

In higher-order method, it is determined by a parameter 
specifying panel size in each CSF
Additional input in configuration file (CFG) 
ICTRSURF=0 Pressure Integration
ICTRSURF=1 Control Surface



Contribution from the tanks can be evaluated as current 
pressure integration and added to the exterior forces

Fluid pressure and velocity are evaluated at large 
number of field points on the control surface and the run 
time of Force module increases. 

In practice, this would be compensated by reduced run 
time of Poten module because the method is less 
sensitive to the discretization of the body surface than 
the pressure integration.



All quadrants/halves of body geometry can be 
input when body has symmetric planes

In V6.2, when ISX=1 or ISY=1, only x>0 or y>0 of 
body geometry should be specified in GDF 

In V6.3, any one of the quadrant or half can be 
specified in GDF  



Thin flat elements can be specified at x=0 
or y=0 plane without loosing symmetry

In V6.2, when thin flat elements are on the planes of 
symmetry both sides of the symmetric plane must be 
specified GDF.

For example, for a ship with bilge keel along the 
centerline, the entire hull should be in GDF.

In V6.3, a half of the ship + thin element can be specified 
in GDF and the symmetry of hull itself is exploited. 



Works on the 2nd-order module
Investigation has been made to find an improvement in efficiency
of proposed approach to storing Rankine part of subdivision

Following numbers are required on the free surface
around bottom mounted cylinder due to the subdivision
4x 4   panels 120k free surface points
2 x 2  panels  55k
1 x 1  panels  15k
(Free surface forcing are evaluated at these points.)

Sorting the same points within some tolerance reduces numbers.
Within1E-5 the number reduced by an order of magnitude



The computation for the velocity potential on the 
waterline reveals inaccuracy of the potential near 
the waterline due to current integration scheme in 
V6.1S, although the global quantities are more 
accurate than the low order output, illustrating more
accurate approach is required in the higher-order 
method.

The result in the attached paper by Molin et al. is 
made using low order option.



Geometry considered in Molin et al.



Proposed delivery sequence

V6.3

V6.3 + Quadratic forces including Tank and Lid for Multi-
Body interaction

V6.3S



Evaluation of quadratic force using 
control surface



Mean drift force by momentum conservation
Newman (1967) – far field                          
Ferreira and Lee (1994)-near field-numerical but accurate

Quadratic force by pressure integration
Lee and Newman(1991) – numerical, not always robust                           
due to body velocity. 
Nonuniform discretization and mapping are used normally. 
Fine discretization may be necessary and can be expansive 
especially in multi-body interaction.  Sometimes convergence can’t 
be confirmed.

Quadratic force by use of control surface + body surface, proposed 
by Chen(2005), appears useful. The rederivation of the expressions for 
this approach is in the appendix and the method is implemented in 
WAMIT
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Advantages
Mean force:
The fluid velocity on the body is not necessary. Thus 
the results are very accurate and not as much sensitive 
to the discretization. 

All components of mean drift force can be evaluated for 
the bodies with thin elements in principle.  

Quadratic force:
For fixed body, integration of the pressure is not 
required at all for the quadratic forces

No quadratic terms of the velocity.



Disadvantages

The control surfaces is required. It can be simple when free 
surface is not included, however, such as the submerged
bodies or when surge, sway and yaw are only of interest 
for the surface piercing bodies.

Additional computational time in Force module for large 
number of field points. 



Thus far Dx, Dy, Dz and Mz are correctly 
evaluated
Bottom mounted structures are not 
considered which needs a control line on the 
bottom



Effect of tanks
or springs on mean drift forces

by J. N. Newman

October 2005



OUTLINE

• Last year results were shown for the effect of 
tanks on drift forces, with substantial reduction of 
the drift forces in some cases

• These results were surprising to us and others
• This effect is apparently due to the (negative) 

added mass of the fluid in the tanks
• Similar results can be found for a vessel with 

linear-stiffness (`spring’) mooring constraints
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Mean drift forces
(solid=momentum, dashed=pressure)

Period
5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

10

12

14 RHO=0
RHO=0.5
RHO=1

Surge drift force -- head seas

Period
5 6 7 8 9 10 11 12 13 14 15

0

20

40

60

80

100

120

140

160 RHO=0
RHO=0.5
RHO=1

Sway drift force -- beam seas

Period
5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

10

12

14

RHO=0
RHO=0.5
RHO=1

Surge drift force -- 135 degrees

Period
5 6 7 8 9 10 11 12 13 14 15

0

20

40

60

80 RHO=0
RHO=0.5
RHO=1

Sway drift force -- 135 degrees



Generic FPSO (GEOMXACT) 300x50x15m
Tanks 40x40x15m, 3m above hull
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RAO’s and drift forces in head/beam waves
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Inviscid linear theory

• From momentum conservation, there is no 
mean horizontal force on the tanks

• The only effect of the tanks on the vessel’s 
drift force is via the 1st order motions

• The only effect of the tanks on the 1st

order motions of the vessel is from the 
added mass (and hydrostatic restoring 
forces) of the tanks



Spheroid with 3 tanks
(See Appendix for more details)
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Spheroid with spring restraint in sway mode
(no tanks)
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FPSO with springs in beam seas
(See Appendix for more details)
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Conclusions

• Only effect on vessel’s motions is from added mass 
of tanks (and hydrostatics)

• Drift force reduced by tanks, in regions where the 
tank added mass is negative

• This is equivalent to a positive stiffness mooring 
restraint, which is more effective over a broad band 
of wave periods

• For elongated vessels this effect is only substantial 
for the sway drift force in beam seas



Notes on the computation with 
an artificial lid for the analysis of 
two-bodies interaction



Newman devised a method to absorb resonant 
energy  by placing a flexible lid on the free surface 
inside the gap  (2003 WAMIT meeting and OMAE 
2004)

Rigid body modes of ships
+

Flexible lid in-between

Applied damping force to 
Flexible modes of the lid
using external damping
matrix in FRC



The same procedure is followed with a difference 
geometry. 

Input files are included in the report which may be used 
for other geometry with minor modifications.

With the lid, the wave exciting forces should be 
evaluated using fixed mode option and added mass and 
damping coefficient by an additional post-processing. 



Complete radiation/diffraction solution is the sum of 
a) radiation/diffraction solution with fixed lid  and 
b) all radiation solutions for generalized modes of the lid

RAO, fluid pressure and velocity on the body and at the field points
and mean drift forces Include a) and b)

Added mass, damping coefficient and wave exciting force, 
in .2 or .3,  includes a) only



Wave exciting forces can be evaluated using fixed body 
option in optn.4 

IRAD=1 in POT
IOPTN(4) < 0 in FRC
Set MODE=0 for all modes of structures
Set MODE=1 for all generalized modes of lid



Evaluate lid amplitude due to the body motion j from

[−ω2Al,k + iω(Bl,k + BE
l,k) + Cl,k]ζk = ω2Al,j − iωBl,j (1)

or from the normalized equation

[−KĀl,k + iK(B̄l,k + B̄E
l,k) + C̄l,k]ζk = KĀl,j − iKB̄l,j (2)

Here K = ω2/g. Ās and B̄s are added masses and damping coefficients output in optn.1. B̄E
l,k is the

damping forces in FRC normalized by ρω.

C̄l,k =
∫∫

lid

LlLkdxdy (3)

The complete added mass and damping coefficient in i mode due to j mode are then evaluated from

Āc
i,j − iB̄c

i,j = Āi,j − iB̄i,j +
∑

k

ζk(Āi,k − iB̄i,k) (4)



Barge L=160 B=60 D=15  
Lid L=160 B=8
Gap=8
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Three existing subroutines of WAMIT are used

GAPLID is used for lid geometry. Non-uniform spacing in 
the longitudinal direction as Chebyshev polynomials 
used as generalized modes of the lid motion.

GAP_FS describes the product of Chebyshev polynomial 
and Fourier Series. 

BARGENUC is used for barge. Non-uniform spacing  
only near the corner.
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B=0
A22 B22 A33 B33 A55 B55 A35 B35

6.0 -1.1e4 1.7e4 2.3e5 1.6e3 3.3e8 1.8e6 9.3e0 7.7e0
7.8 -4.5e4 9.3e4 2.0e5 1.2e4 3.0e8 1.3e7 3.4e0 -9.8e0
8.6 -1.4e5 4.3e4 1.7e5 1.3e4 1.9e8 2.1e8 6.8e0 2.0e1

B=4E5

6.0 -1.1E4 2.0E4 2.3E5 2.1E3 3.3E8 2.6E6 1.2E1 5.0E0
7.8 -5.3E4 6.4E4 2.0E5 1.2E4 3.0E8 1.9E7 2.9E0 -6.2E0
8.6 -1.4E5 6.6E4 1.7E5 1.9E4 2.8E8 1.1E8 -2.6E-01 3.8E1

Table 1: Added mass and damping coefficient calculated with and without lid damping



It is showed that all conventional outputs of 
WAMIT can be evaluated with the lid presence

Both diffraction solution and hydrodynamic 
coefficients are affected by the damping on the 
lid.  



Summing linear and 2nd-order wave 
elevations 

Using utility program FS_ELV 



The linear incident wave is determined by specifying the complex wave 
amplitudes for all frequencies and headings under consideration.

By definition (in WAMIT), the crest of unit amplitude incident  wave is 
above x=0 (the origin of the global coordinates system) at t=0. The phase 
of the complex amplitude is relative to this reference point and time. 

NP=number of frequencies
NB=number of wave headings

ζζζ
1
I(x, t) = Real[

NP∑
i

NB∑
k

ζ1
I (ωi, βk)]

= Real[
NP∑
i

NB∑
k

A(ωi, βk)ζ̄1
I (ωi, βk)]

= Real[
NP∑
i

NB∑
k

A(ωi, βk)ei(ωit−Kk·x)]



Total wave elevation up to the 2nd-order is obtained by the sum of linear 
and sum-frequency and difference frequency components.

Linear : .6
Sum frequency : .15s
Difference frequency : .15d

ζζζ(x, t) = ζζζ
1(x, t) + ζζζ

+(x, t) + ζζζ
−(x, t)

= Real[
NP∑
i=1

NB∑
k=1

ζ1(x, ωi, βk)eiωit

+
NP∑
i=1

NP∑
j=1

NB∑
k=1

NB∑
l=1

ζ+(x, ωi, ωj, βk, βl)ei(ωi+ωj )t

+
NP∑
i=1

NP∑
j=1

NB∑
k=1

NB∑
l=1

ζ−(x, ωi, ωj, βk, βl)ei(ωi−ωj)t]



.6 contains normal linear pressure for all field points (including the 
submerged points). For field points on z=0, the output also represents the 
normalized linear wave elevation.

.15s and .15d contains the normalized wave elevation only for the points on 
the free surface. (The values of the normalized 2nd-order pressures differ 
from the wave elevations and they  are output in .14s and .14d)

ζ1(x, ωi, βk) = A(ωi, βk)ζ̄1(x, ωi, βk)
ζ+(x, ωi, ωj, βk, βl) = (A(ωi, βk)A(ωj, βl)/L)ζ̄+(x, ωi, ωj, βk, βl)
ζ−(x, ωi, ωj, βk, βl) = (A(ωi, βk)A∗(ωj , βl)/L)ζ̄−(x, ωi, ωj, βk, βl)

ζ̄+(x, ωi, ωj, βk, βl) = ζ̄+(x, ωj, ωi, βk, βl)
and

ζ̄−(x, ωi, ωj, βk, βl) = ζ̄−∗(x, ωj, ωi, βk, βl)



WAMIT outputs a half of the full QTF if IXSUM=2 or IXDIF=2. These are 
sufficient because of the symmetry relation. However complete combinations of i 
and j may be input to WAMIT (IXSUM=1 or IXDIF=1) but the frequencies i 
is always assumed greater or equal to j for the difference frequency output.  

ζζζ(x, t) = Real[
NP∑
i=1

NB∑
k=1

A(ωi, βk)ζ̄1(x, ωi, βk)eiωit

+
NP∑
i=1

NB∑
k=1

NB∑
l=1

(A2(ωi, βk)/L)ζ̄+(x, ωi, ωi, βk, βl)ei(ωi+ωj )t

+ 2
NP∑
i=1

i−1∑
j=1

NB∑
k=1

NB∑
l=1

(A(ωi, βk)A(ωj , βl)/L)ζ̄+(x, ωi, ωj, βk, βl)ei(ωi+ωj )t

+
NP∑
i=1

NB∑
k=1

NB∑
l=1

(|A(ωi, βk)|2/L)ζ̄−(x, ωi, ωi, βk, βl)

+ 2
NP∑
i=1

i−1∑
j=1

NB∑
k=1

NB∑
l=1

(A(ωi, βk)A∗(ωj, βl)/L)ζ̄−(x, ωi, ωj, βk, βl)ei(ωi−ωj)t]



FS_ELV is an utility program combining the linear and 2nd-order wave elevation 
output from WAMIT and producing dimensional wave elevations for specified 
incident wave field

A) Required WAMIT output files:

a) .6,  .15s and.15d

b) .fpt:  to find the field points on the free surface 

B) An additional input file to FS_ELV      

out.FEI 

C) Output files from FS_ELV

out.FEO, out_FEO.DAT



Input parameters in .FEI

NUMHDR
ULEN
NT
T1, DT 
NF
IF(1),IF(2),...,IF(NF)  (do not specify when NF < 0)
NP
IP(1),IP(2),...,IP(NP)  (do not specify when NF < 0)
NB
IB(1),IB(2),...,IB(NB) (do not specify when NF < 0)
ABSA(1,1),ABSA(2,1),...,ABSA(NB,1)
ABSA(2,1),...
...
ABSA(1,NP),ABSA(2,NP),...,ABSA(NB,NP)
PHSA(1,1),PHSA(2,1),...,PHSA(NB,1)
PHSA(2,1),...
...
PHSA(1,NP),PHSA(2,NP),...,PHSA(NB,NP)



Output quantities in .FEO

IF(1)
T1  ELV(T1)  ELV1(T1)  ELVS(T1)  ELVD(T1)
T2 ELV(T2) ELV1(T2)  ELVS(T2) ELVD(T2)
.    
.    
Ti ELV(Ti) ELV1(Ti) ELVS(Ti) ELVD(Ti)
.
.
TN ELV(TN) ELV1(TN) ELVS(TN) ELVD(TN)
IF(2)
.

An additional output _FEO.DAT for x-y plots



Computational note: 

In principle,  when .14s, 14d, 15s or 15d are computed the partition 
radius (and intermediate partition radius)  should be move further 
out as much as the distance to the field point from the body surface

2nd-order incident wave is computed in WAMIT and input wave 
amplitude should have linear component only



t=0                                             t=0.5

5 second wave (about 40m length) in infinite depth. Cylinder diameter 
is 16.8m and 35m draft. Wave amplitude is 3m 
Wave direction toward negative x-axis.    



t=1                                         t=2



t=2 



Animation using Tecplot.
Apparently the 2nd-order effects are from locked waves

The 2nd-order effects are conspicuous toward lee-side 
Combined with linear waves, the surface becomes steep 
i) along the side of the cylinder as the crest passes 
ii)  at the lee side

Note:

Data in FEO must be rearranged to make 3D view in Tecplot (or using other program)
_FEO.dat can be used for 2D view (variation in time for each field point) in Tecplot

Field points, 2048 total inside R=24m, in FRC are arranged with an order for easy 
conversion of the output to Tecplot format. (Points from the centroids of the free 
surface panels in FDF are used.)



 
Current Participants  
 
 
Chevron 
 
Conoco 
 
Norsk Hydro 
 
OTRC 
 
Petrobras/ 
USP 
 
Shell 
 
Statoil 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Marcos Ferreira 
Petrobras 
Cenpes-Diprex-Sedem 
Cidade Universitaria Quadra 7 
21949-900 Ilha do Fundao 
Rio de Janeiro, Brazil 
marcos.donato@petrobras.com.br 
 
Tim Finnigan 
ChevronTexaco Energy Co. 
6001 Bollinger Canyon Road 
Room L-4296 
San Ramon, CA 94583-2324 
TimFinnigan@ChevronTexaco.com 
  
George Gu 
ConocoPhillips 
OF 1004, 1E & PM 
600 North Dairy Ashford 
Houston, TX  77079  
george.z.gu@conocophillips.com 
 
Kjell Herford 
Norsk Hydro ASA                     Street Address 
PO Box 7190                             Sandsliveien 90 
N-5020 Bergen, Norway           N-5254 Sandsli, Norway 
Kjell.Herfjord@hydro.com 
 
Kazuo Nishimoto 
University of Sao Paulo 
Department of Naval Architecture and Ocean Engineering 
2231, Av. Prof. Mello Moraes 
Cidade Universitaria 
Sao Paulo, SP, Brazil  CEPO05508-900 
knishimo@usp.br 
 
 
 
 
 
 



 
Stergios Liapis 
Shell Oil Company 
Offshore Structures 
3737 Bellaire Blvd. 
Houston, TX 77025 
stergios.liapis@Shell.Com 
 
 
Rick Mercier 
Offshore Technology Research Center 
1200 Mariner Drive 
College Station, TX 77845-3400 
rmercier@civil.tamu.edu 
 
John Niedzwecki 
Offshore Technology Research Center 
1200 Mariner Drive 
College Station, TX 77845-3400 
j-Niedzwecki@.tamu.edu 
 
Per Teigen 
STATOIL                                 Street Address 
Postuttak                                   Ark, Ebbels v.10 
N 7005 Trondheim                    Rotvoll 
Norway                                      Trondheim, Norway 
pte@statoil.com 
 
John Letcher 
AeroHydro 
54 Herrick Road/PO Box 684 
Southwest Harbor, ME 04679-0684 
jletcher@aerohydro.com 
 
Michael Shook 
AeroHydro 
54 Herrick Road/PO Box 684 
Southwest Harbor, ME 04679-0684 
mshook@aerohydro.com 
 



 
 
Michael Graham 
Dept. of Aeronautics 
Imperial College 
London, SW7 2BY 
United Kingdom 
m.graham@imperial.ac.uk 
 
 
Nick Newman 
WAMIT  
1 Bowditch Road 
Woods Hole, MA 02543 
jnn@mit.edu 
 
Chang-Ho Lee 
WAMIT  
822 Boylston Street, Suite 202 
Chestnut Hill, MA 02467 
chlee@wamit.com 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Appendices 
 



NON-LINEAR WAVE INTERACTION

WITH A SQUARE CYLINDER

B. Molin1, E. Jamois1,2, C.H. Lee3 & J.N. Newman4

1 École généraliste d’ingénieurs de Marseille, 13 451 Marseille cedex 20
2 Saipem SA, 78 884 Saint-Quentin Yvelines cedex, France

3 WAMIT Inc., 822 Boylston Street, Chestnut Hill, MA 02467-2504, USA
4 1 Bowditch Rd, Woods Hole, MA 02543, USA

1 Introduction

A companion paper offered at the workshop (Jamois et al., 2005a) describes the application of
a high-order Boussinesq model to oblique wave interaction with a vertical plate. This model,
under development at EGIM, is further described in Jamois et al. (2004, 2005b). It has proved
to properly reproduce the run-up effect, attributed to third-order interactions between the
incoming and reflected wave-fields (Molin et al., 2005).

Here we move one step backward and focus on second-order quantities, with the same aim of
validating the Boussinesq model against reference results. There have been numerous studies
dealing with second-order wave interaction with vertical circular cylinders (e.g. see Molin &
Marion, 1986; Eatock Taylor & Hung, 1987; Newman, 1996; Ferrant, Malenica & Molin, 1999).
However, in its present stage, the Boussinesq model can only handle (wall-sided) rectangular
geometries, as it is based on regular cartesian discretizations in the horizontal plane. So we
consider the parent case of a vertical cylinder with a square cross section, standing on the
sea-floor. The first and second-order diffraction problems are solved numerically with WAMIT,
convergence being assessed through successively finer discretizations. The Boussinesq model is
run with incoming regular waves of such low steepnesses that no (third-order) run-up effects
are observed. Fourier analysis of the time series yields fundamental and double frequency
components that are compared with the results from WAMIT.

2 Test cases

In dimensional form, the waterdepth h is taken equal to 1 m, while the square cylinder side d
is 2 m. WAMIT calculations have been made for two headings (0 and 45 degrees) and three
wave periods (2.30, 1.45 and 1.16 s), leading to kh = 1, 2 and 3.

The Boussinesq model was run only at zero degree heading. Advantage was taken of the
symmetry to model only one half of the square cylinder, protruding from one of the side-walls.
The numerical domain has a width of 12 m and a length of 10 wavelengths, with the (half)
square starting 4 wavelengths from the wave generation zone. Of these the first two are used to
damp out reflected waves, meaning that they propagate freely only over two wavelengths. This
short distance was chosen in order to minimize nonlinear interactions between the incoming
and reflected wave systems. It might have the drawback that the second-order forcing at the
free surface is confined to a small domain.



3 First-order results

We consider the case kh = 3 with normal incidence. The Boussinesq model was run with a
wave steepness H/L equal to 0.002, leading to incoming waves of wavelengths L = 2.094 m. At
such a low wave steepness non-linear effects do not appear. The wavemaker region is relaxed
over a single wavelength in the direction of propagation. Input wave conditions are obtained
using the theoretical stream function solution given by Fenton (1988). A relaxation zone and
a sponge layer extending over two wavelengths allow respectively the damping of backward
reflected wave fields due to the structure and of outgoing waves. The discretization used for
this linear case, is ∆y = L/20 = 0.1047 m, ∆x = 0.1043 m (the end of the structure should lie
half way between grid points) and ∆t = T/20 = 0.058 s. Consequently, the half square cylinder
dimensions actually are 2.09 x 1 m. The simulation was run up to a stationary state. Figure
?? show the free surface elevations around the cylinder and the vertical pressure profile at
midpoint on the weather side computed by the Boussinesq model and by WAMIT. A very good
agreement is obtained between the two numerical models. Some weak discrepancies appear
in the vicinity of corner points. They might be linked to the local smoothing applied in the
Boussinesq model.

4 Second-order results

We focus on the second-order diffraction potential at the double frequency 2ω. Figure 1 shows
WAMIT results (in the case kh = 3) obtained through different discretizations. It shows,

in non-dimensional form (2ω |ϕ(2)
D (x, y, 0)| d/(g A2)), the modulus of the second-order scattered

potential along the waterline, at the two headings of 0◦ (red) and 45◦ (blue). Two discretizations
were used, corresponding to, respectively, 6, 9, 12 and 15 higher-order panels over one half-side
of the cylinder. Similar densities have been used vertically. It can be observed that the two
finest discretizations lead to quasi identical values. At lower kh values convergence is obtained
more quickly.

The Boussinesq model was run at the same kh value of 3, for incoming wave steepnesses H/L
of 1, 2 and 3 %. The second-order potential at z = 0 was derived from the potential at the free
surface Φ̃(x, y, η, t) by dividing it with 1 + ω2 η/g and extracting the double frequency compo-
nent through Fourier analysis. (At kh = 3 the second order incident potential is completely
negligible.)

Figure ?? shows the obtained modulus of Φ
(2)
D on the weather side of the cylinder, compared

with the results from WAMIT. The Boussinesq model provides quite similar results when the
steepness varies, suggesting that the differences are actually of higher (fourth?) order. The
agreement between WAMIT and the Boussinesq model can only be qualified of ”fair”.

These results are very preliminary. Further investigations will be presented at the workshop.
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Figure 1: Second-order scattered potential along the waterline, as obtained by WAMIT. Red: heading
0◦. Blue: heading 45◦. Lines: 4840 and 4720 panels, respectively, on a quadrant of the body and
4720 the free surface inside of a circle of radius 2.4m. Dotted lines: 2730panels on the body and 2700
on the free surface. Gauss quadrature is applied with single precision accuracy for the interatation of
forcing on the annulus of inner and outer radii of 2.4m and 5.4m. Beyond outer circle, the far field
approximation is used.
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Wave effects on vessels with internal tanks

by J. N. Newman
<jnn@mit.edu>

(20th Workshop on Water Waves and Floating Bodies – Spitsbergen – 29 May - 1 June 2005)

The motions of fluid in internal tanks have important effects on the dynamic response of
vessels in waves, particularly during loading and unloading operations when the tanks are
partially filled. This topic is of special interest for LNG tankers and FPSO vessels. Coupled
tank/ship motions have been studied by Kim (2001) and Rognebakke & Faltinsen (2001, 2003),
with nonlinear analyses of the interior flow in the tanks, and by Molin et al (2002) and Malenica
et al (2003) with linear analyses. In these works the tank dynamics are analysed separately
from the exterior radiation and diffraction problems. The solution of the coupled equations of
motion follows by combining the hydrodynamic forces for the tanks with the vessel’s added-
mass, damping, and exciting forces. When the tank motions are linearized, their only effect on
the vessel’s motions is to modify the added mass.

Recently we have extended the panel code WAMIT to analyse coupled tank/ship motions,
following a unified approach where the interior wetted surfaces of the tanks are included as an
extension of the conventional computational domain defined by the exterior wetted surface of
the body. All of the tank and hull wetted surfaces form one large global boundary surface.
The principal modification is to impose the condition that the separate fluid domains are
independent. This is achieved trivially, by setting equal to zero all coefficients of the linear
system for the potential where the source and field points are in different fluid domains. This
is equivalent to forming separate linear equations for each domain, and concatenating these
into one global system in a block-diagonal manner. The exterior free-surface Green function is
used for each domain, with vertical shifts of the coordinates corresponding to the free-surface
elevation in each tank.

The principal advantage of this approach is that the exterior panel code can be extended
to include internal tanks with relatively few modifications. All of the usual hydrodynamic
parameters can be evaluated in a similar manner as for vessels without tanks, including the
added-mass and damping coefficients, exciting forces, RAO’s, and the mean second-order drift
forces and moments. Local values of the free-surface elevation, pressure and velocity can be
evaluated both inside and outside the tanks. The geometry of the tanks can be described in
the same manner as the exterior hull surface. Disadvantages include the larger size of the
linear system, which implies some loss of computational efficiency, and the need to re-run the
complete interior/exterior analysis in situations where only one or the other is changed, e.g.
when the tank depths are modified. Since the entire analysis is linearized, nonlinear sloshing
effects are not included.

It is not obvious that a conventional exterior panel code can be applied to an internal
problem. We have found the higher-order method to be robust in this respect, with B-spline
representation of the solution and accurate definitions of the geometry. The low-order panel
method also appears to work for tanks, although with somewhat slower convergence. Compu-
tations have been made for various vessels, including the barge model studied by Molin et al
(2002) where experimental and computational data are available for comparison. Some of these
results are shown by Newman (2004).



Results are presented here for the hemispheroid shown in Figure 1. This vessel has three
internal tanks, with the same depth of fluid in each tank. The tank lengths are the same, but
the widths and elevations are different. Figure 2 shows the first-order motions and drift force in
beam waves, for three relative densities of the tank fluid (ρ=0, 0.5, 1.0). The total displacement
and waterline plane are fixed as the tank density is varied. The results with zero density are
equivalent to the conventional case without internal tanks. All results are normalized by the
exterior fluid density, gravity, wave amplitude, and a characteristic length scale of 1m, and
plotted vs. the nondimensional wavenumber Ka = ω2a/g, where ω is the radian frequency
and a=1m is the maximum radius of the spheroid. The vertical center of gravity is in the
waterplane, and the radii of gyration are kx=50cm, and ky = kz=3m.

Figure 3 shows the six principal added-mass coefficients, normalized by the mass of fluid
displaced by the hull. Since the added mass is the sum of the separate pressure forces on the
hull and tanks, the coefficients in Figure 3 are linear functions of the tank density.

Most of the added-mass coefficients are singular at the resonant periods of antisymmetric
sloshing modes. The surge resonance at Ka=1.184 is the same for all three tanks. In sway
there are two resonant frequencies (Ka=1.653, 2.427) due to the different widths. The first
singularity in yaw corresponds to the sway mode of the outer tanks (Ka=2.427); the second
smaller singularity is associated with the diagonal sloshing mode of the center tank (Ka=2.922).

At resonance the added-mass coefficients tend to ±∞. This explains the rapid fluctuations
of the RAO’s shown in Figure 2. The sway RAO approaches zero at the resonant frequencies,
where the added mass is infinite. At slightly higher frequencies, where the negative added mass
cancels the body mass, the RAO is large. Since the hull is axisymmetric there is no moment
from the external pressure, but the tanks induce roll motions when the density is nonzero.

For heave the tank fluid translates uniformly and the RAO is not affected. The frequency-
dependence of the tank component of the heave added mass is an interesting feature in Figure
3. The velocity potential in each tank is φ = (zt−1/K), per unit heave velocity, where zt is the
local vertical coordinate above the tank free surface and the constant 1/K is required by the
free-surface condition. Thus, for a tank with volume Vt and waterplane area St, the added mass
is ρt(Vt − St/K). In the equations of motion the contribution from the term St/K is canceled
by the hydrostatic restoring force.

The most surprising results are the sharp reductions in the sway drift force, which coincide
with the peak sway response. From momentum conservation the tanks only affect the horizontal
drift force indirectly, by modifying the motions of the hull. Since roll has no effect, the reduced
drift force is associated primarily with the sway RAO.
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Figure 1: Perspective view of the spheroidal hull. The length is 12m and the midship section is a semi-circle of
radius 1m. Each tank is 2m long, and 62.5cm deep. The tank widths are 120cm, 160cm, and 120cm. The free
surfaces are at z= 25cm, 12.5cm, and 25cm above the exterior waterplane.

Figure 2: RAO’s and drift force for the spheroidal hull in beam waves.



Figure 3: Added-mass coefficients of the spheroidal hull. All coefficients are normalized by the displaced mass
and a length of 1m.



Note on the effect of sway spring restoring

by J. N. Newman
<jnn@mit.edu>

January 2, 2005

The following figures show the effects of an external spring restoring force applied to the
sway mode only, for the spheroid in beam seas and for the FPSO in beam seas and bow seas.
The drift force plots include the fixed case, where all motions are zero, shown by the dashed
lines.

The spheroid has maximum radius a = 1m and a length of 12m. The FPSO has a length
of 300m, beam 50m, draft 15m. The characteristic length scale and density are equal to one.
Roll is in degrees per meter. VCG=0.0.

In beam seas an optimum spring constant k reduces the drift force, except for long waves.
It appears that this is primarily due to the phase shift of the sway motion. For example,
comparing the spheroid results at Ka=1.6, for k=0 and k=500, the sway RAO’s have the same
magnitude but substantially different drift forces, and the phases differ by about 100 degrees.
Surprisingly, it seems that the reduced drift force occurs when the sway drift is out of phase
with the orbital motion of the incident wave.

In bow seas, where the sway amplitude is relatively small, the effect of the springs is negli-
gible.

There is a small irregularity in the spheroid drift force near Ka=4.5, probably due to irregular
frequency effects. IRR=0 is used for all of the present results.



Figure 1: RAO’s and drift force for the spheroidal hull in beam waves.



Figure 2: RAO’s and drift force for the FPSO hull in beam waves.



Figure 3: RAO’s and drift force for the FPSO hull in bow waves (β = 135◦).



Evaluation of quadratic forces using control surfaces

Chang-Ho Lee

October 10, 2005

1 Summary

The quadratic forces contribute to the excitation at low or high frequencies than those of incident waves
which may be important for the analysis of structures with certain resonance features. The forces can be
evaluated in principle by the integration of the quadratic pressure over the instantaneous wetted surface.
As a special case, the mean drift force can also be evaluted using momentum conservation principle. The
momentum conservation over entire fluid volume is advantageous in terms of accuracy and computational
efficiency. But only the horizontal forces and vertical moment on a single body can be obtained from this
approach and thus not applicable, for example, for multiple body interactions or bodies near the infinite
walls (WAMIT low order option has this capability). The pressure integrations have been applied for these
cases as well as for full quadratic force transfer functions.

The computational accuracy of the quadratic pressure forces is generally worse than that of the first order
forces and it requires significanly more refined descritization entailing increased computing time. This is
because of the evaluation of first order fluid velocity is, in general, less accurate than the pressure on the
body surface or in its proximity. When the body has sharp corners, the quadratic pressure near the corner
is singular, though integrable, and it renders the computational result significantly inaccurate. Nonuniform
discretization near the corner (Lee and Newman (1992)1 in the low order method or nonuniform mapping
in the higher order method (Lee, Farina, and Newman,(1998)) 2 do produce more accurate results than
otherwise. However the convergence of the results is still very poor.

Ferreira and Lee (1994)3 applied momentum conservation over finite volume surrounting the structures.
The force on the body is then evaluated by the momentum flux through the control surface enclosing
the body. The computational result is significantly more accurate by avoiding evaluation of the fluid
velocity on the body surface. Recently Chen (2005)4 transformed the pressure integration over the body
surface into those both on the body and control surfaces in the evaluation of the quadratic forces. For
monochromatic waves, the difference frequency forces should be the same as Ferreira and Lee(1994). One
obvious advantage of this new expression is the fluid velocity is not required on the body surface for fixed
body for the bichromatic waves. It is also suggested, even for the moving body, that accuracy would
improve for low frequency forces.

In this note, we rederived these expressions for quadratice forces.
1Lee, C.-H. and Newman, J. N. ”Sensitivity of wave loads to the discretization of bodies” BOSS ’92, London.
2Lee C.-H., Farina L., and Newman J. N., ”A Geometry-Independent Higher-Order Panel Method and its Application to

WaveBody Interactions”, Engineering Mathematics and Applications Conference, Adelaide, 1998.
3Ferreira, M. D., and Lee, C.-H. ”Computation of second-order mean wave forces and moments in multibody interaction,”

BOSS ’94, MIT
4Chen X.-B. ”Computation of low-frequency loads by the middle-field formulation’ 20th workshop for water waves and

floating bodies”, 2005
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2 Quadratic forces

In WAMIT V6.2 User Manual (2005), the quadratic forces and moments take forms,

~F (2) =
1
2
ρg

∫

WL

~n[ζ − Ξ3]2(1 − n2
z)

− 1
2 dl

−ρ

∫∫

Sb

~n(
1
2
∇φ · ∇φ + ~Ξ · ∇φt)ds + ~α × (~F

(1)
D + ~F

(1)
S )

−ρgAwp[α1α3xf + α2α3yf +
1
2
(α2

1 + α2
2)Zo]~k (1)

~M (2) =
1
2
ρg

∫

WL

(~x × ~n)[ζ − (Ξ3)]2(1 − n2
z)−

1
2 dl

−ρ

∫∫

Sb

(~x × ~n)(
1
2
∇φ · ∇φ + ~Ξ · ∇φt)ds

+~α × ~M
(1)
D + ~ξ × (~F

(1)
D + ~F

(1)
S )

+ρg[−Awp(ξ3α3xf +
1
2
(α2

1 + α2
2)Zoyf ) − 2α1α3L12 + α2α3(L11 − L22)

+∀(α1α2xb −
1
2
(α2

1 + α2
3)yb)]~i

+ρg[−Awp(ξ3α3yf − 1
2
(α2

1 + α2
2)Zoxf ) + 2α2α3L12 + α1α3(L11 − L22)

+∀1
2
(α2

2 + α2
3)xb)]~j

+ρg[Awpξ3(α1xf + α2yf ) + (α2
1 − α2

2)L12 + α1α2(L22 − L11)]~k (2)

where

~F
(1)
D = −ρ

∫∫

Sb

~nφtds

~F
(1)
S = −ρgAwp(ξ3 + α1yf − α2xf )~k (3)

~M
(1)
D = −ρ

∫∫

Sb

(~x × ~n)φtds (4)

~Ξ = ~ξ + ~α× x (Ξ3 = ξ3 + α1y − α2x) (5)

ζ is the first order runup, Awp is the waterplane area and ∀ is the volume of the body. In addition (xf , yf )
are the coordinates of the center of flotation, (xb, yb, zb) are the coordinates of the center of buoyancy,
(~i,~j,~k) are positive unit vectors relative to the x, y, z coordinates, and Lij =

∫
wp

xixjds denotes the
moments of the waterplane area.
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In equations (1) and (2), the contributions from the quadratic of Ξ3 in the waterline integral are purely
hydrostatic5 and they are added, along with the contributions from FS , with other hydrostatic forces and
moments (See Appendix A) to have

~F (2) =
1
2
ρg

∫

WL

~n′(ζ2 − 2ζΞ3)dl

−ρ

∫∫

Sb

~n(
1
2
∇φ · ∇φ + ~Ξ · ∇φt)ds + ~α × ~F

(1)
D

+F
(2)
S (6)

~M (2) =
1
2
ρg

∫

WL

(~x × ~n′)(ζ2 − 2ζΞ3)dl

−ρ

∫∫

Sb

(~x × ~n)(
1
2
∇φ · ∇φ + ~Ξ · ∇φt)ds

+~α × ~M
(1)
D + ~ξ × ~F

(1)
D

+M
(2)
S (7)

F
(2)
S and M

(2)
S are given in Appendix A.

In the above equations, we focus on two terms containing fluid velocity

I = −ρ

∫∫

Sb

~n(
1
2
∇φ · ∇φ + ~Ξ · ∇φt)ds (8)

and

J = −ρ

∫ ∫

Sb

(~x × ~n)(
1
2
∇φ · ∇φ + ~Ξ · ∇φt)ds (9)

and as shown in Appendix B, these terms are tranformed into integrals including the control surfaces to
have the results

~F (2) =
1
2
ρg

∫

WL

~n′ζ2dl − ρg

∫

WL

[ζ(~Ξ · ~n′)]k̂dl

− ρ

∫ ∫

Sc+f

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds

+ F
(2)
S

− ρ

∫ ∫

Sb

[∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds (10)

~M (2) =
1
2
ρg

∫

WL

(~x × ~n′)ζ2dl − ρg

∫

WL

ζ(~Ξ · ~n′)(~x × k̂)dl

5In the subsequent derivation, we ignore the vertical components of the waterline integral assuming that the body is
wallsided
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− ρ

∫ ∫

Sc+f

[(~x ×∇φ)
∂φ

∂n
− 1

2
(~x × ~n)(∇φ · ∇φ)]ds

+ ~M
(2)
S

− ρ

∫ ∫

Sb

[(~x ×∇φ)(
d~Ξ
dt

· ~n) + (Ξ · ~n)(~x ×∇φt)]ds (11)

The first waterline integral can be transferred to the integrals over the free surface and boundary of control
surface on the free surface as shown in Appendix C

~F (2) = −1
2

ρ

g

∫

CL

~n′φ2
tdl − ρg

∫

WL

[ζ(~Ξ · ~n′)]k̂dl

− ρ

∫ ∫

Sc

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds

− ρ

∫ ∫

Sf

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds +

ρ

g

∫ ∫

Sf

φt∇′φtds

+ ~F
(2)
S

− ρ

∫ ∫

Sb

[∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds (12)

~M (2) = −
1
2

ρ

g

∫

CL

(~x × ~n′)φ2
tdl − ρg

∫

WL

ζ(~Ξ · ~n′)(~x × k̂)dl

− ρ

∫ ∫

Sc

[(~x×∇φ)
∂φ

∂n
− 1

2
(~x × ~n)(∇φ · ∇φ)]ds

− ρ

∫ ∫

Sf

[(~x×∇φ)
∂φ

∂n
− 1

2
(~x × ~n)(∇φ · ∇φ)]ds +

ρ

g

∫ ∫

Sf

φt(~x ×∇′φt)ds

+ ~M
(2)
S

− ρ

∫ ∫

Sb

[(~x ×∇φ)(
d~Ξ
dt

· ~n) + (Ξ · ~n)(~x ×∇φt)]ds (13)

In the presence of bichromatic waves, one of 4 force components is considered. Denoting the frequency
components as subscripts i and j and sum and difference frequencies as superscripts + and −, we have

4~F±
ij = ±ρ

g
ωiωj

∫

CL

~n′φiφ
±
j dl + ρ

∫

WL

[(iωiφi)(Ξ±
j · ~n) + (±iωjφ

±
j )(Ξi · ~n)]k̂dl

− ρ

∫ ∫

Sc

[∇φi

∂φ±
j

∂n
+ ∇φ±

j

∂φi

∂n
− ~n(∇φi · ∇φ±

j )]ds

− ρ

∫ ∫

Sf

(∇′φiφz
±
j + ∇′φ±

j φzi) − ~n(∇′φi · ∇′φ±
j − φziφz

±
j )ds

∓ ρωiωj

g

∫ ∫

Sf

φi∇′φ±
j + φ±

j ∇
′φids

+ ~F±
S
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− iρ(ωi ± ωj)
∫ ∫

Sb

∇φi(Ξ±
j · ~n) + ∇φ±

j (Ξi · ~n)ds (14)

4 ~M±
ij = ±ρ

g
ωiωj

∫

CL

(~x × ~n′)φiφ
±
j dl + ρ

∫

WL

[(iωiφi)(Ξ±
j · ~n) + (±iωjφ

±
j )(Ξi · ~n)](yî − xĵ)dl

− ρ

∫ ∫

Sc

~x × [∇φi

∂φ±
j

∂n
+ ∇φ±

j

∂φi

∂n
− ~n(∇φi · ∇φ±

j )]ds

− ρ

∫ ∫

Sf

~x × [(∇′φiφz
±
j + ∇′φ±

j φzi) − ~n(∇′φi · ∇′φ±
j − φziφz

±
j )]ds

∓ ρωiωj

g

∫ ∫

Sf

~x × (φi∇′φ±
j + φ±

j ∇
′φi)ds

+ ~M±
S

− iρ(ωi ± ωj)
∫ ∫

Sb

~x × [∇φi(Ξ±
j · ~n) + ∇φ±

j (Ξi · ~n)]ds (15)

The normalized forms of (14 -15) to be implemented in WAMIT are

4~F±
ij = −

∫

CL

~n′φiφ
±
j dl −

∫

WL

[φi(Ξ±
j · ~n) + φ±

j (Ξi · ~n)]k̂dl

±

√
1

kikj

∫ ∫

Sc

[∇φi

∂φ±
j

∂n
+ ∇φ±

j

∂φi

∂n
− ~n(∇φi · ∇φ±

j )]ds

±

√
1

kikj

∫ ∫

Sf

(∇′φiφz
±
j + ∇′φ±

j φzi) − ~n(∇′φi · ∇′φ±
j − φziφz

±
j )ds

+
∫ ∫

Sf

φi∇′φ±
j + φ±

j ∇
′φids

+ ~F±
S

+
∫ ∫

Sb

Ω±

ωi
∇φi(Ξ±

j · ~n) ± Ω±

ωj
∇φ±

j (Ξi · ~n)ds (16)

4 ~M± = −
∫

CL

(~x × ~n′)φiφ
±
j dl −

∫

WL

[φi(Ξ±
j · ~n) + φ±

j (Ξi · ~n)](yî − xĵ)dl

±

√
1

kikj

∫ ∫

Sc

~x× [∇φi

∂φ±
j

∂n
+ ∇φ±

j

∂φi

∂n
− ~n(∇φi · ∇φ±

j )]ds

±

√
1

kikj

∫ ∫

Sf

~x × [(∇′φiφz
±
j + ∇′φ±

j φzi) − ~n(∇′φi · ∇′φ±
j − φziφz

±
j )]ds

+
∫ ∫

Sf

~x × (φi∇′φ±
j + φ±

j ∇
′φi)ds

+ ~M±
S

+
∫ ∫

Sb

~x × [
Ω±

ωi
∇φi(Ξ±

j · ~n) ± Ω±

ωj
∇φ±

j (Ξi · ~n)]ds (17)

where ki and kj are normalized infinite depth wave numbers and Ω± = (ωi ± ωj).
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3 Appendix A

Using n′ = n(1 − n2
z)−

1
2 as two dimensional unit normal vector on Z=0, the hydrostatic terms of the

waterline integral are

FWS =
1
2
ρg

∫

WL

~n′Ξ2
3dl

MWS =
1
2
ρg

∫

WL

(~x × ~n′)Ξ2
3dl (18)

Define a vector V = (0, 0, Ξ2
3). Since V · ~n′ = 0, we have

FWS =
1
2
ρg

∫

WL

~n′V3 − (V · ~n′)k̂dl = −1
2
ρg

∫

WL

~t × V dl

MWS =
1
2
ρg

∫

WL

~x × [V3~n
′ − (V · n)k̂]dl = −1

2
ρg

∫

WL

~x × (~t × V )dl (19)

The application of Stokes theorem as shown in equations (31) and (40) over waterplane area leads to

FWS = −~α × FS (20)

MWS = ρgzwpAwpα1(ξ3 + α1yf − α2xf )̂i

+ ρgzwpAwpα2(ξ3 + α1yf − α2xf )ĵ

− ρg[Awpξ3(α1xf + α2yf ) + (α2
1 − α2

2)L12 + α1α2(L22 − L11)]k̂ (21)

where zwp the body coordinate of the free surface and is equat to −Zo. Zo is the global vertical coordinate
of the origin of the body coordinates system and is equal to XBODY(3) in WAMIT.

Adding ~ξ × ~F
(1)
S , we have the quadratic hydrostatic force and moments as follows.

F
(2)
S = −ρgAwp[α1α3xf + α2α3yf +

1
2
(α2

1 + α2
2)Zo]~k (22)

M
(2)
S = ρg{[−Awp(ξ3α3xf +

1
2
(α2

1 + α2
2)Zoyf ) − 2α1α3L12 + α2α3(L11 − L22)

+ ∀(α1α2xb −
1
2
(α2

1 + α2
3)yb)]

+ [−Awpα1Zo(ξ3 + α1yf − α2xf ) − Awpξ2(ξ3 + α1yf − α2xf )]}~i

+ ρg{[−Awp(ξ3α3yf − 1
2
(α2

1 + α2
2)Zoxf ) + 2α2α3L12 + α1α3(L11 − L22)

+ ∀1
2
(α2

2 + α2
3)xb)]

+ [−Awpα2Zo(ξ3 + α1yf − α2xf ) + Awpξ1(ξ3 + α1yf − α2xf )]}~j (23)
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4 Appendix B

We want to show two vector relations
1
2

∫ ∫

SC

~n(∇φ · ∇φ)ds =
∫ ∫

SC

∇φ
∂φ

∂n
ds (24)

and
1
2

∫ ∫

SC

(~x × ~n)(∇φ · ∇φ)ds =
∫ ∫

SC

(~x ×∇φ)
∂φ

∂n
ds (25)

where
∫∫

SC
is a surface enclosing a volume of fluid, V .

To show (24), we apply Green’s theorem to
∂φ

∂x
and φ in V to have

∫ ∫

SC

~n · ∂φ

∂x
∇φds =

∫ ∫ ∫

V

∂φ

∂x
∇2φ + ∇(

∂φ

∂x
) · ∇φdv

=
∫ ∫ ∫

V

∇(
∂φ

∂x
) · ∇φdv

=
1
2

∫ ∫ ∫

V

∂

∂x
(∇φ · ∇φ)dv (26)

We have two additional relations by replacing
∂φ

∂x
with

∂φ

∂y
and

∂φ

∂z
and expressing them as a vector

relation,
∫ ∫

SC

∇φ(~n · ∇φ)ds =
1
2

∫ ∫ ∫

V

∇(∇φ · ∇φ)dv

=
1
2

∫ ∫

SC

~n(∇φ · ∇φ)ds (27)

Here Gauss theorem (cf. Arfken eq 1.102) is invoked to convert the volume integral into the surface
integral.

Similarly for (25), we apply Greens theorem to ~x×∇φ and φ. For convenience we use a compact expression
where three relations, each one of them correspoding to one of three component of ~x × ∇φ (or (~x ×∇))
into a single vector form.

∫ ∫

SC

(~x ×∇φ)(~n · ∇φ)ds =
∫ ∫ ∫

V

(~x ×∇φ)∇2φ + ∇(~x×∇φ) · ∇φdv

=
∫ ∫ ∫

V

∇(~x ×∇φ) · ∇φdv

=
1
2

∫ ∫ ∫

V

(~x ×∇)(∇φ · ∇φ)dv

=
1
2

∫ ∫ ∫

V

[(~x×∇)(∇φ · ∇φ) + (∇× ~x)(∇φ · ∇φ)]dv

= −1
2

∫ ∫ ∫

V

∇× [(∇φ · ∇φ)~x]dv

=
1
2

∫ ∫

SC

(~x × ~n)(∇φ · ∇φ)ds (28)
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where a variant of Gauss theorem is used in the last step (cf. Arfken 1.103).

We take the surface SC as a union of a control surface Sc in the fluid domain which surrounds the body
and intersects the free surface, the body surface itself Sb and the free surface between the control and body
surfaces, Sf . The latter may not necessary, if the body is completely submerged. Then from the relations
(24) and (25) and the fact d~Ξ/dt · ~n = ∂φ/∂n on Sb, we have

1
2

∫ ∫

Sb

~n(∇φ · ∇φ)ds =
∫ ∫

Sb

∇φ(
d~Ξ
dt

· ~n)ds +
∫ ∫

Sc+f

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds (29)

and

1
2

∫ ∫

Sb

(~x×~n)(∇φ ·∇φ)ds =
∫ ∫

Sb

(~x×∇φ)(
d~Ξ
dt

·~n)ds+
∫ ∫

Sc+f

[(~x×∇φ)
∂φ

∂n
− 1

2
(~x×~n)(∇φ ·∇φ)]ds (30)

Next we transform the second terms of the integrals I and J. First we consider an integral
∫ ∫

Sb

[~n(~Ξ · ∇φt) − (Ξ · ~n)∇φt]ds =
∫ ∫

Sb

Ξ × (~n ×∇φt)ds

= −
∫ ∫

Sb

[(~n ×∇) × φtΞ]ds +
∫ ∫

Sb

[φt(~n ×∇) × Ξ]ds

= −
∫

WL

(~t × φtΞ)dl − α ×
∫ ∫

Sb

φt~nds (31)

We invoked Stoke’s theorem to have the first term on the last line and used (~n ×∇) × Ξ = ~n × ~α for the
second term. Here ~t = (tx, ty, 0) is tangential vector along the waterline. When the normal vector on the
body points into the body as in WAMIT, the positive ~t points counter-clockwise direction viewed from
above. Denoting the normal vector on the waterline as ~n′ = (n′

x, n′
y, 0), we have tx = n′

y and ty = −n′
x

(n′ = n for wall-sided bodies only. Otherwise (n′
x, n′

y) = (nx, ny)/
√

n2
x + n2

y).

−
∫

WL

(~t × φtΞ)dl =
∫

WL

φt[(Ξ3~n
′ − (~Ξ · ~n′)k̂]dl = −g

∫

WL

ζ[(Ξ3~n
′ − (~Ξ · ~n′)k̂]dl (32)

We now consider the second term of J integral.
∫ ∫

Sb

[(~x× ~n)(~Ξ · ∇φt) − (~x ×∇φt)(Ξ · ~n)]ds =
∫ ∫

Sb

~x × [Ξ× (~n ×∇φt)]ds

= −
∫ ∫

Sb

~x × [(~n ×∇) × φtΞ − φt(~n ×∇) × Ξ]ds(33)

We apply the following relation to the first term of the right hand side integral of equation (33) (see
Hildebrand Chapter 6 equations (74d) and (74e) and replace ∇, u and v with ~x, ~n ×∇ and φt

~Ξ),

~x × [((~n ×∇) × φt
~Ξ) − φt(~n ×∇) × Ξ] = (~n ×∇)(~x · φt

~Ξ) − φt
~Ξ × ((~n ×∇)× ~x)

+ (~n ×∇) × (~x × φt
~Ξ) − 2(φt

~Ξ · (~n ×∇))~x

− ~x((~n ×∇) · φt
~Ξ) + φt

~Ξ((~n ×∇) · ~x)
− ~x× [φt(~n ×∇) × Ξ] (34)
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In equation (34), we find

−φt
~Ξ × ((~n ×∇) × ~x) = 2φt

~Ξ× ~n (35)

and

−2(φt
~Ξ · (~n ×∇))~x = −2φt

~Ξ × ~n (36)

cancel each other. Also we find

φt
~Ξ(~n ×∇) · ~x) = 0 (37)

and

−~x((~n ×∇) · φt
~Ξ) = −(~n ×∇) · ~xφt

~Ξ + [(~n ×∇)~x] · φt
~Ξ

= −(~n ×∇) · ~xφt
~Ξ + φt

~Ξ × ~n (38)

In the last equation a single vector relation in place of 3 separate ones for each components of ~x is used.

Combining the last terms in the equations (34) and (38)

φt
~Ξ × ~n − ~x × [φt(~n ×∇) × ~Ξ] = φt(~ξ × ~n) + φt[(~α × ~x) × ~n − ~x × (~n × ~α)]

= φt(~ξ × ~n) + φt[~α × (~x × ~n)] (39)

Using relations (35-39), (34) can be written

∫ ∫

Sb

[(~x × ~n)(~Ξ · ∇φt) − (Ξ · ~n)(~x ×∇φt)]ds

= −
∫ ∫

Sb

(~n ×∇)(~x · φt
~Ξ)ds −

∫ ∫

Sb

(~n ×∇) × (~x × φt
~Ξ)ds +

∫ ∫

Sb

(~n ×∇) · ~xφt
~Ξds

− ~ξ ×
∫ ∫

Sb

φtds − ~α ×
∫ ∫

Sb

(~x × ~n)φtds

= −
∫

WL

(~x · φt
~Ξ)~tdl −

∫

WL

~t × (~x × φt
~Ξ)dl +

∫

WL

~x(φt
~Ξ · ~t)dl

− ~ξ ×
∫ ∫

Sb

φtds − ~α ×
∫ ∫

Sb

(~x × ~n)φtds

= −
∫

WL

~x × (~t × φt
~Ξ)dl − ~ξ ×

∫ ∫

Sb

φtds − ~α ×
∫ ∫

Sb

(~x × ~n)φtds

= − g

∫

WL

ζ~x × [Ξ3~n
′ − (~Ξ · ~n′)k̂]dl − ~ξ ×

∫ ∫

Sb

φtds − ~α ×
∫ ∫

Sb

(~x × ~n)φtds (40)

The first three surface integrals on the right-hand side are converted to line interals by making use of
variants of Stoke’s theorem (cf Arfken 1.109,1.110, 1.111).

∫ ∫

Sb

1
2
~n(∇φ · ∇φ) + ~n(~Ξ · ∇φt)ds =

∫ ∫

Sb

[∇φ(
d~Ξ
dt

· ~n) + (Ξ · ~n)∇φt]ds

+
∫ ∫

Sc+f

[∇φ
∂φ

∂n
− 1

2
~n(∇φ · ∇φ)]ds

− g

∫

WL

ζ[(Ξ3~n
′ − (~Ξ · ~n′)k̂]dl − α ×

∫ ∫

Sb

φt~nds (41)
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and thus
∫ ∫

Sb

[
1
2
(~x × ~n)(∇φ · ∇φ) + (~x × ~n)(~Ξ · ∇φt)]ds =

∫ ∫

Sb

[(~x×∇φ)(
d~Ξ
dt

· ~n) + (Ξ · ~n)(~x ×∇φt)]ds

+
∫ ∫

Sc+f

[(~x ×∇φ)
∂φ

∂n
− 1

2
(~x × ~n)(∇φ · ∇φ)]ds

− g

∫

WL

ζ~x × [Ξ3~n
′ − (~Ξ · ~n′)k̂]dl

− ~ξ ×
∫ ∫

Sb

φtds − ~α ×
∫ ∫

Sb

(~x × ~n)φtds (42)

5 Appendix C

The first terms of equations (10) and (11)

FW =
1
2
ρg

∫

WL

~n′ζ2dl

MW =
1
2
ρg

∫

WL

(~x × ~n′)ζ2dl (43)

can be transfered to the integrals over free surface and the intersection of the free surface and control
surface as shown below. We denote the force on the intersection of the control surfaces as

FC =
1
2
ρg

∫

CL

~n′ζ2dl =
1
2

ρ

g

∫

CL

~n′φ2
t dl

MC =
1
2
ρg

∫

CL

(~x × ~n′)ζ2dl =
1
2

ρ

g

∫

CL

(~x × ~n′)φ2
tdl (44)

Define a vector V = (0, 0, ζ2
3). Since V · ~n′ = 0, we have

FW+C =
1
2
ρg

∫

WL+CL

~n′V3 − (V · ~n′)k̂dl = −1
2
ρg

∫

WL+CL

~t × V dl

MW+C =
1
2
ρg

∫

WL+CL

~x× [V3~n
′ − (V · n)k̂]dl = −1

2
ρg

∫

WL+CL

~x × (~t × V )dl (45)

Again Stoke’s theorem is applied as in equations (31) and (40). Here, however, in order to let the free
surface be on the left side of the trace following ~t, the normal vector on the free surface should be pointing
downward and thus

FW = −FC +
1
2
ρg

∫∫

Sf

(k̂ ×∇) × (ζ2k̂)ds = −FC + ρg

∫∫

Sf

ζ∇′ζds

= −FC +
ρ

g

∫∫

Sf

φt∇′φtds (46)

MW = −MC +
1
2
ρg

∫∫

Sf

(k̂ ×∇)(~x · (ζ2k̂))ds +
1
2
ρg

∫∫

Sf

(k̂ ×∇) × (~x × (ζ2k̂))ds

= −MC + ρg

∫∫

Sf

ζ(~x ×∇′ζ)ds = −MC +
ρ

g

∫∫

Sf

φt(~x ×∇′φt)ds (47)
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Summing linear and 2nd-order wave elevations using FS ELV

C-H Lee

October 7, 2005

Assuming a discrete spectrum, the linear incident wave elevation in the time domain, ζζζ1
I (note that

it is in boldface), can be expressed as a sum of frequency domain components ζ1
I as follows.

ζζζ
1
I(x, t) = Real[

NP∑

i

NB∑

k

ζ1
I (ωi, βk)]

= Real[
NP∑

i

NB∑

k

A(ωi, βk)ζ̄1
I (ωi, βk)]

= Real[
NP∑

i

NB∑

k

A(ωi, βk)ei(ωit−Kk·x)] (1)

Here NP is the number of frequencies (or periods) and NB is the number of wave headings. ωi

denotes wave frequency. Kk = (κ cos βk, κ sinβk) denotes wave-number vector where βk is the wave
heading angle (the direction of the wave with respect to the positive x-axis). κ(kappa) is the finite
depth wave number (this should be distinguished from the subscript k to β which is wave heading
index), satisfying the dispersion relation (equation (2.4), WAMIT Theory Manual). x = (x, y, 0)
is the coordinates of the field point on the free surface. ζ̄1

I (ωi, βk) represents the unit amplitude
sinusoidal wave and A(ωi, βk) is the amplitude of that wave.

In the presence of the bodies, the total linear wave elevation includes the component due to scattering
wave field in addition to the incident wave (1). Let the total linear wave elevation in the time domain
be denoted by ζζζ

1 and those due to second-order wave fields at sum- and difference-frequency by ζζζ
+

and ζζζ
−, respectively. The total wave elevation, up to the second-order, is a sum of these components

in the following form.

ζζζ(x, t) = ζζζ1(x, t) + ζζζ+(x, t) + ζζζ−(x, t)

= Real[
NP∑

i=1

NB∑

k=1

ζ1(x, ωi, βk)eiωit

+
NP∑

i=1

NP∑

j=1

NB∑

k=1

NB∑

l=1

ζ+(x, ωi, ωj, βk, βl)ei(ωi+ωj )t

+
NP∑

i=1

NP∑

j=1

NB∑

k=1

NB∑

l=1

ζ−(x, ωi, ωj, βk, βl)ei(ωi−ωj)t] (2)

ζ1(x, ωi, βk) represents the linear wave elevation in the frequency domain, in the presence of an inci-
dent wave of frequency ωi, wave heading βk and amplitude A(ωi, βk). ζ±(x, ωi, ωj, βk, βl) represent



2

the sum and difference frequency wave elevation in the frequency domian in the presence of two
linear incident waves: one with frequency ωi, wave heading βk and amplitude A(ωi, βk) and the
other with frequency ωj, wave heading βl and amplitude A(ωj, βl).

The wave elevations, ζ1, ζ+ and ζ− are related to the corresponding WAMIT’s normalized wave
elevations, ζ̄1, ζ̄+ and ζ̄−, as follows.

ζ1(x, ωi, βk) = A(ωi, βk)ζ̄1(x, ωi, βk)
ζ+(x, ωi, ωj, βk, βl) = (A(ωi, βk)A(ωj, βl)/L)ζ̄+(x, ωi, ωj, βk, βl)
ζ−(x, ωi, ωj, βk, βl) = (A(ωi, βk)A∗(ωj , βl)/L)ζ̄−(x, ωi, ωj, βk, βl) (3)

L is the character length specified and is the same as ULEN in GDF file. A∗ denotes the complex
conjugate of A.

ζ̄±, on the right-hand side of of (3), have the following symmetry property with respect to two wave
frequencies (see equation (3.7), WAMIT Theory Manual).

ζ̄+(x, ωi, ωj, βk, βl) = ζ̄+(x, ωj, ωi, βk, βl)
and

ζ̄−(x, ωi, ωj, βk, βl) = ζ̄−∗(x, ωj, ωi, βk, βl) (4)

Using the symmetry relation, a half of the off-diagonal terms can be removed in double summation
over frequency index in (2). Also using the normalization convention in (ref eq:normal), ζζζcan be
evaluated from the following expression.

ζζζ(x, t) = Real[
NP∑

i=1

NB∑

k=1

A(ωi, βk)ζ̄1(x, ωi, βk)eiωit

+
NP∑

i=1

NB∑

k=1

NB∑

l=1

(A2(ωi, βk)/L)ζ̄+(x, ωi, ωi, βk, βl)ei(ωi+ωj )t

+ 2
NP∑

i=1

i−1∑

j=1

NB∑

k=1

NB∑

l=1

(A(ωi, βk)A(ωj , βl)/L)ζ̄+(x, ωi, ωj, βk, βl)ei(ωi+ωj )t

+
NP∑

i=1

NB∑

k=1

NB∑

l=1

(|A(ωi, βk)|2/L)ζ̄−(x, ωi, ωi, βk, βl)

+ 2
NP∑

i=1

i−1∑

j=1

NB∑

k=1

NB∑

l=1

(A(ωi, βk)A∗(ωj, βl)/L)ζ̄−(x, ωi, ωj, βk, βl)ei(ωi−ωj)t] (5)

It is assumed that ωi − ωj ≥ 0 without loss of generality in the above equation.

In general, A(ωi, βk) is complex quantity and it is convenient to specify it in the form of |Ai,k|eiPi,k

where |Ai,k| is the modulus and Pi,k is the phase angle. As an example, if the incident wave
component has its crest at x = 0 when t = 0, Pi,k = 0.
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FS ELV

The program FS ELV computes the wave elevation in the time domain based on the equation 5.
The normalized linear wave elevations (ie. due to unit amplitude of the incident waves) ζ̄1 is read
from numeric output frc.6 files and normalized second-order wave elevation ζ̄± is read from frc.15s
and frc.15d.

In addition to these files, frc.fpt file should be available as an input to FS ELV. frc.fpt is a standard
WAMIT output file and contains the coordinates of the field points. (Note 1: .6 contains normalized
linear hydrodynamic pressure for all field points specified in .fpt (and .frc) file. The normalized linear
pressure has the same numerical value as the normalized linear wave elevation when the points are
on the free surface (ie z=0 in global coordinates system). On the other hand, .15s and .15d contain
the 2nd-order wave elevation only for the field points on the free surface only. The linear wave
elevations are read only for the free surface points)

An additional input file with an extension ‘.FEI’ must be prepared. If the filename of .FEI file is
the same as that of WAMIT output file, i.e. frc.FEI, FS ELV reads the input parameters from this
file. Otherwise FS ELV prompts to enter a filename without the extension .FEI.

FS ELV outputs wave elevations over specified time instances at specified free surface point(s). The
incident wave amplitudes for NP times NB components are also specified in .FEI. The default
output filename of FS ELV is same as .FEI file. The extension of the output file is ‘.FEO’ The
parameters in .FEI and the output in .FEO are explained next. (Program writes data in .FEO file
in Techplot output format to a file FEO.DAT. The only difference from .FEO is the lines for IF(i).
This is written as ZONE T=“IF(i)”, to group the elevation for each field point into a ZONE.)

Input parameters in .FEI:

NUMHDR
ULEN
NT
T1, DT
NF
IF(1),IF(2),...,IF(NF) (do not specify when NF ¡ 0)
NP
IP(1),IP(2),...,IP(NP) (do not specify when NF ¡ 0)
NB
IB(1),IB(2),...,IB(NB) (do not specify when NF ¡ 0)
ABSA(1,1),ABSA(2,1),...,ABSA(NB,1)
ABSA(2,1),...
...
ABSA(1,NP),ABSA(2,NP),...,ABSA(NB,NP)
PHSA(1,1),PHSA(2,1),...,PHSA(NB,1)
PHSA(2,1),...
...
PHSA(1,NP),PHSA(2,NP),...,PHSA(NB,NP)
NUNHDR can be 0 or 1 and it should have the same value as that specified .cfg file. If NUMHDR=1,
WAMIT output files .fpt, .6, .15s and .15d have a header line.

ULEN characteristic length. It should have the same value as that specified .gdf file.

NT is number of time steps.

T1 is initial time.
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DT is time inverval between time steps.

NF is the number of field points for which the wave elevations are output. NF should be less or
equal to the total number of field points on the free surface.

If NF ≤ 0, IF array below should not be specified. The program outputs free surface elevation at
all points on the free surface among the field points specified in .fpt file.

IF is an integer array for the indices of free surface points. IF ≤ NFIELD. The latter is specified in
FRC file. IF should not be specified, if NF ≤ 0.

NP is number of periods to be included in the summation. NP ≤ NPER. The latter is specified in
POT file.

If NP ≤ 0, IP array below should not be specified. The program includes all wave periods in .6 file
for the evaluation of the free surface elevation.

IP is an integer array of dimension NP. It contains period indices. This should not be specified if
NP ≤ 0.

NB is number of headings to be included in the summation. NB ≤ NBETA. The latter is specified
in POT file.

If NB ≤ 0, IB array below should not be specified. The program includes all wave headings in .6
file for the evaluation of the free surface elevation.

IB is an integer array of dimension NB. It contains heading indices. This should not be specified
if NB ≤ 0.

ABSA is a real matrix of dimension NP×NB. It contains the modulus of the incident wave ampli-
tude.

PHSA is a real matrix of dimension NP×NB. It contains the phase angle, in degrees, of the incident
wave amplitude. Output quantities in .FEO:

IF(1)
T1 ELV(T1) ELV1(T1) ELVS(T1) ELVD(T1)
T2 ELV(T2) ELV1(T2) ELVS(T2) ELVD(T2)
.
.
Ti ELV(Ti) ELV1(Ti) ELVS(Ti) ELVD(Ti)
.
.
TN ELV(TN) ELV1(TN) ELVS(TN) ELVD(TN)
IF(2)
.
.

IF field point index.

TN Time. TN=T1+(N-1)·DT

ELV Total wave elevation. ELV1, ELVS and ELVD are linear, sum and difference frequency com-
ponent of the wave elevation.

Note2: NFIELD, NPER and NBETA are estimated from .fpt and .6 files. FS ELV reads .fpt and
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finds total number of field points. It also finds the number of field points on the free surface and
their sequential index among all field points. It then reads .6 and finds NPER and NBETA. It reads
in linear pressure corresponding to selected points, periods, headings (specified by IF, IP and IB in
.FEI file).




