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Chapter 1

INTRODUCTION

This Theory Manual describes the theoretical background of the computer program
WAMIT (WaveAnalysisMIT). It provides an overview of the theories and the computa-
tional methodologies in a concise manner. For detailed information on the selected subjects,
some of the published and unpublished articles are included in the Appendix. The use of
the program WAMIT and its capabilities are described in a separate User Manual.

WAMIT is a panel program designed to solve the boundary-value problem for the inter-
action of water-waves with prescribed bodies in finite- and infinite- water depth. Viscous
effects of the fluid are not considered throughout and thus the flow field is potential with-
out circulation. A perturbation series solution of the nonlinear boundary value problem is
postulated with the assumption that the wave amplitude is small compared to the wave
length. It is also assumed that the body stays at its mean position and, if it is not fixed,
the oscillatory amplitude of the body motion is of the same order as the wave amplitude.
The time harmonic solutions corresponding to the first- and second-terms of the series
expansion are solved for a given steady-state incident wave field. The incident wave field
is assumed to be represented by a superposition of the fundamental first-order solutions of
particular frequency components in the absence of the body. The boundary value problem
is recast into integral equations using the wave source potential as a Green function. The
integral equation is then solved by a ‘panel’ method for the unknown velocity potential
and/or the source strength on the body surface. Using the latter, the fluid velocity on the
body surface is evaluated.

For incident waves of specific frequencies and wave headings, the linear problem is solved
first. Chapter 2 describes the linear boundary value problem and the solution procedure.
The quadratic interaction of two linear solutions defines the boundary condition for the
second-order problem. Chapter 3 is devoted to the discussion of the second-order problem.
In Chapter 4, the rigid body motion is discussed in the context of the perturbation series
and the expressions for the hydrodynamic forces are derived. Chapter 5 lists the references
quoted in this manual and Chapter 6 lists the references illustrating the computational
results obtained from WAMIT. The Appendix includes the articles on the subjects which
are not explained in detail in this manual.

Since the following will focus primarily on the hydrodynamic interaction, it is appropri-
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ate to mention here restrictions on the bodies which may be analyzed using WAMIT. The
bodies may be fixed, constrained or neutrally buoyant and they may be bottom mounted,
submerged or surface piercing. Multibody interactions between any combinations of these
bodies can be analyzed. If only first-order quantities are required, the bodies need not be
rigid. Flexible bodies can be analyzed if the oscillatory displacements of the body surface
are described by specified mode shapes.

An extremely thin submerged body may be difficult to analyze when the small thickness
between the two facing surfaces compared to the other dimensions of the body may render
the integral equation ill-conditioned1. However, a thin body floating on the free surface (in
other words the draft is very small) is not included in this category, since it has only one
large wetted surface. In the extreme case of the latter, a body touching the free surface
may be analyzed.

1.1 Description of the Problem

The flow is assumed to be potential, free of separation or lifting effects, and it is governed
by the velocity potential Φ(x, t) which satisfies Laplace’s equation in the fluid domain:

∇2Φ = 0 (1.1)

Here t denotes the time and x=(x, y, z) denotes the Cartesian coordinates of a point in
space. x may be expressed as the sum of the component vectors as x = xi + yj + zk. The
undisturbed free surface is the z = 0 plane with the fluid domain z < 0.

The fluid velocity is given by the gradient of the velocity potential

V(x, t) = ∇Φ =
∂Φ

∂x
i +

∂Φ

∂y
j +

∂Φ

∂z
k (1.2)

The pressure follows from Bernoulli’s equation:

p(X, t) = −ρ(∂Φ

∂t
+

1

2
∇Φ · ∇Φ + gz) (1.3)

where ρ is the density of the fluid and g is the gravitational acceleration.
The velocity potential satisfies the nonlinear free-surface condition:

∂2Φ

∂t2
+ g

∂Φ

∂z
+ 2∇Φ · ∇∂Φ

∂t
+

1

2
∇Φ · ∇(∇Φ · ∇Φ) = 0 (1.4)

applied on the exact free surface

ζ(x, y) = −1

g
(
∂Φ

∂t
+

1

2
∇Φ · ∇Φ)z=ζ (1.5)

1See Martin and Rizzo (1993)
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With the assumption of a perturbation solution in terms of a small wave slope of the
incident waves, the velocity potential is expanded in a form

Φ(x, t) = Φ(1)(x, t) + Φ(2)(x, t) + · · · (1.6)

When the body is not fixed the motion amplitude2 of the body is also expanded in a
perturbation series

ξξξ = ξξξ(1) + ξξξ(2) + · · · (1.7)

From (1.5) and (1.6) and with aid of the Taylor expansion with respect to the mean
free surface, the free surface elevation also takes the form of the perturbation series,

ζ(x, y) = ζ (1)(x, y) + ζ (2)(x, y) + · · · (1.8)

with

ζ (1)(x, y) = −1

g

∂Φ

∂t

(1)

(1.9)

ζ (2)(x, y) = −1

g
(
∂Φ

∂t

(2)

+
1

2
∇Φ(1) · ∇Φ(1) − 1

g

∂Φ

∂t

(1) ∂2Φ(1)

∂z∂t
) (1.10)

In the equations (1.9) and (1.10), the right-hand sides are evaluated on z = 0.
From the equations (1.4), (1.6) and (1.8-10), the free surface boundary conditions for

Φ(1) and Φ(2) imposed on z = 0 are derived. For a moving body, from the equations (1.6)
and (1.7) and with the Taylor expansion of Φ with respect to the mean body surface, the
body boundary condition is derived. These boundary conditions are discussed in later
chapters.

Given a wave spectrum, it is customary to assume the spectrum is expressed as a linear
superposition of the first-order incident waves of different frequencies. Thus the total first
order potential for the wave-body interaction can be expressed by a sum of components
having circular frequency ωj > 0:

Φ(1)(x, t) = Re
∑
j

φj(x)eiωjt (1.11)

Here we introduce the complex velocity potential φj(x), indepedent of time, with the
understanding that the real part of the time harmonic solution is physically relevant.

In (1.11) φj(x) denotes the first-order solution in the presence of the incident wave of
frequency ωj and the wave heading βj . The directional spreading of the incident waves is
not shown explicitly in (1.11). However if it is necessary, one can easily incorporate it by
expressing φj(x) as a sum of the velocity potential components each of which corresponds
to a particular wave heading.

At the second-order, the total velocity potential takes a form

2Here ξξξ includes both the translational and the rotational modes of the rigid body. Frequently ξξξ is
used, in a restrictive sense, to denote only the translational modes. In that case ααα is used for the rotational
modes.

3



Φ(2)(x, t) = Re
∑

i

∑
j

φ+
ij(x)ei(ωi+ωj)t + φ−

ij(x)ei(ωi−ωj)t (1.12)

with symmetric conditions

φ+
ij = φ+

ji and φ−
ij = φ−∗

ji (1.13)

Here we may assume ωi ≥ ωj ≥ 0 without loss of the generality. φ+
ij and φ−

ij are
referred to as the sum- and difference-frequency velocity potential with frequencies ωi +ωj

and ωi − ωj, respectively. These are determined by two linear incident wave components:
one has frequency ωj and wave heading βj and the other ωi and βi. If one consider the
directional spreading of the incident waves, φ±

ij(x) are represented by a double summation
over wave headings (βi, βj).

In the next two chapters, we discuss the solution procedures for the complex velocity
potentials φj and φ±

ij in (1.11) and (1.12).
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Chapter 2

THE FIRST-ORDER PROBLEM

In this Chapter, we review the first-order boundary value problem and its solution proce-
dure. Here we consider one particular frequency component, ωj from the discrete spectrum
(1.12). Thus we omit the subscript j indicating the frequency component in this Chapter.

The velocity potential of the first-order incident wave is defined by

φI =
igA

ω
Z(κz)e−iκ(x cos β+y sin β) (2.1)

representing a plane progressive wave of the circular frequency ω and the wave heading
angle β. β is an angle of incidence to the positive x − axis. A denotes the complex wave
amplitude.

The function Z represents the depth dependence of the flow and is given by

Z(κz) = eκz (2.2)

for infinite water depth, where κ =
ω2

g
≡ ν. For a fluid of depth h, it is given by

Z(κz) =
cosh(κ(z + h))

cosh(κh)
(2.3)

where the wavenumber κ is the real root of the dispersion relation

κ tanhκh =
ω2

g
(2.4)

An efficient root finding algorithm for the computation of κ from equation (2.4) is
explained in Newman (1990).

The scattering velocity potential φS represents the disturbance to the incident wave due
to the presence of the body in its fixed position. Linearity of the problem allows it to be
distinguished from the disturbance due to the the motion of the body which is represented
by the radiation potential φR. Thus the total velocity potential is given by

φ = φI + φS + φR = φD + φR (2.5)
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where the diffraction potential φD is defined to be the sum of φI and φS.
The radiation potential itself is a linear combination of the components corresponding

to the modes of motion such that

φR = iω
6∑

k=1

ξkφk (2.6)

Here ξk is the complex amplitude of the oscillatory motion in mode k of the six degrees of
freedom, and φk the corresponding unit-amplitude radiation potential (specifically, unit-
amplitude means the unit-amplitude linear or angular velocity of the rigid body motion).
These modes are referred to as surge, sway, heave, roll, pitch and yaw in the increasing
order of j.

2.1 Boundary Value Problem

The total first-order velocity potential φ, along with each of its components, satisfies the
Laplace equation in the fluid domain:

∇2φ = 0, (2.7)

the linear free-surface condition:

φz − νφ = 0 on z = 0, (2.8)

and a condition on the sea bottom:

∇φ→ 0 as z → −∞, (2.9a)

or
φz = 0 on z = −h (2.9b)

for infinite- and finite- water depth, respectively.
In addition, the scattering and the radiation potentials are subject to a radiation con-

dition stating that the wave energy associated with the disturbance due to the body is
carried away from the body in all direction in the far field.

Finally, the conditions on the body surface complete the description of the boundary
value problem. They take the form

∂φk

∂n
= nk (2.10)

and

∂φS

∂n
= −∂φI

∂n
(2.11)
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where (n1, n2, n3) = n and (n4, n5, n6) = x × n. The unit vector n is normal to the
body boundary and it is assumed the normal vector points out of the fluid domain. x is
the position of a point on the body boundary. From (2.5), it follows that

∂φD

∂n
= 0 (2.12)

Variations to the canonical problem specified above include multibody interactions,
generalized modes and the presence of the vertical walls.1 These topics are reviewed briefly
next, along with the exploitation of the symmetry of the bodies.

2.1.1 Multiple bodies

The decomposition of the radiation potential into components, corresponding to the modes
of the rigid body motion, can be extended to multi-body interaction. This is done by
defining φk as the velocity potential corresponding to a particular mode of one body while
the other bodies are kept stationary. In this way, the total radiation potential consists of
6N components, where N is the number of bodies.

2.1.2 Body deformations

Appication can also be made to analyze the more general modes of motion of the structure,
beyond the rigid body motions. Examples are the bending modes of structural deformation
and the compressible modes of a flexible body. To analyze these modes, the mode shapes are
described in terms of the vector displacement of the body boundary. Let uk(x) be the mode
shape given as a function of the points on the body boundary. Then the corresponding
radiation potential φk satisfies

∂φk

∂n
= uk · n (2.13)

on the body boundary. The details of the analysis for generalized modes and its applications
are described in Newman (1994).

2.1.3 Bodies near walls

When walls are present, the velocity potential is subject to the condition

∂φ

∂n
= 0 (2.14)

on the walls. If we define the incident wave as in (2.1), a reflected wave (φr
I) should be

added to φI to describe the wave field in the absence of the body. The resultant wave field

1Walls are assumed to coincide with the x = 0 or the y = 0 planes. When there are two walls they
meet perpendicularly at the origin.
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satisfies (2.14) and it is a standing wave with maximum free surface elevation 2|A|. (The
actual free surface elevation depends on the incident wave heading β.) The total velocity
potential is then expressed in the form

φ = φI + φr
I + φS + φR (2.15)

If the body geometry is symmetric with respect to the x = 0 plane, the y = 0 plane or
both, the computational domain for φD, φS and φR can be reduced to half or one quadrant
of the entire domain. In these cases, the velocity potentials are expressed as a sum of the
symmetric and antisymmetric components with respect to the planes of symmetry. On
these planes, the symmetric component satisfies

∂φ

∂n
= 0 (2.16)

and the antisymmetric component satisfies

φ = 0 (2.17)

2.1.4 Integral Equations

The boundary value problem is solved by the integral equation method. Thus the velocity
potential φk on the body boundary is obtained from the integral equation

2πφk(x) +
∫∫

SB

dξξξφk(ξξξ)
∂G(ξξξ;x)

∂nξξξ
=

∫∫
SB

dξξξnkG(ξξξ;x) (2.18)

where SB denotes the body boundary.
The corresponding equation for the total diffraction velocity potential φD is (Korsmeyer

et al (1988))

2πφD(x) +
∫∫

SB

dξξξφD(ξξξ)
∂G(ξξξ;x)

∂nξξξ
= 4πφI(x) (2.19)

Alternatively, the scattering potential can be obtained from

2πφS(x) +
∫∫

SB

dξξξφS(ξξξ)
∂G(ξξξ;x)

∂nξξξ
=

∫∫
SB

dξξξ(−∂φI

∂n
)G(ξξξ;x) (2.20)

and the diffraction potential follows from (2.5). From a computational point of view,
(2.19) is slightly more efficient than (2.20) due to the simpler form of the right-hand-side.

We need to evaluate the fluid velocity on the body surface and in the fluid domain for
the computation of the second-order wave forces as discussed in Chapter 4. The velocity
may be computed from the spacial derivatives of Green’s integral equations, (2.18) to
(2.20). However when these equations are solved using a low order panel method, they
can not predict the velocity accurately on or close to the body boundary. This is due to
the hypersingular integral arising from the double derivative of the constant strength wave
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source potential distributed on a quadrilateral panel. For this reason, the fluid velocity is
computed based on the source formulation. The integral equation for the source strength
σk corresponding to the radiation potential φk takes the form (Lee and Newman (1991))

2πσk(x) +
∫∫

SB

dξξξσk(ξξξ)
∂G(ξξξ;x)

∂nx
= nk (2.21)

and that of σS corresponding to the scattering potential φS

2πσS(x) +
∫∫

SB

dξξξσS(ξξξ)
∂G(ξξξ;x)

∂nx
= −∂φI

∂n
(2.22)

The fluid velocity on the body boundary or in the fluid domain due to φk or φS is then
obtained from

∇φ(x) = ∇
∫∫

SB

dξξξσ(ξξξ)G(ξξξ;x) (2.23)

The fluid velocity due to the incident wave is evaluated directly from (2.1).
Integral equations, (2.18) to (2.22) are solved by the panel method. The wetted body

surface is represented by an ensemble of quadrilateral panels (a triangular panel is a special
type of quadrilateral panel where two vertices coalesce). The unknowns are assumed to
be constant over each panel and the integral equation is enforced at the centroid of each
panel (a collocation method). For example, the discrete form of the equation (2.20) takes
the form

2πφS(xk) +
NEQN∑

n=1

φS(xn)
∫

Sn

dξξξ
∂G(ξξξ;xk)

∂nξξξ

=
NEQN∑

n=1

−∂φI(xn)

∂n

∫
Sn

dξξξG(ξξξ;xk) (2.24)

where NEQN is the total number of panels (unknowns) and xk are the coordinates of
the centroid of the k-th panel.

2.1.5 The Green Function

The Green function G(x; ξξξ), which is referred to as the wave source potential, is the velocity
potential at the point x due to a point source of strength −4π located at the point ξξξ. It
satisfies the free-surface and radiation conditions, and in infinite water depth it is defined
by (Wehausen and Laitone (1960))

G(x; ξξξ) =
1

r
+

1

r′
+

2ν

π

∫ ∞

0
dk

ek(z+ζ)

k − ν
J0(kR) (2.25)

r2 = (x− ξ)2 + (y − η)2 + (z − ζ)2 (2.26)
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r′2 = (x− ξ)2 + (y − η)2 + (z + ζ)2 (2.27)

where J0(x) is the Bessel function of zero order. In finite depth, it is defined by

G(x; ξξξ) =
1

r
+

1

r′′
+ 2

∫ ∞

0
dk

(k + ν) cosh k(z + h) cosh k(ζ + h)

k sinh kh− ν cosh kh
e−khJ0(kR) (2.28)

(r′′)2 = (x− ξ)2 + (y − η)2 + (z + ζ + 2h)2. (2.29)

In both expressions (2.25) and (2.28), the Fourier k−integration is indented above the
pole on the real axis in order to enforce the radiation condition.

In the equation (2.24), the influence due to the continuous distribution of the Rank-
ine part of the wave source potential on a quadrilateral panel is evaluated based on the
algorithms described in Newman (1985). The remaining wave part of the Green function
is evaluated based on the algorithms described in Newman (1992). The integration of the
latter part over a panel is carried out using either one or four point Gauss quadrature.
When the field and source points are close together and in the vicinity of the free surface,
G takes a form

G(x; ξξξ) =
1

r
+

1

r′
− 2νeν(z+ζ)(log(r′ + |z + ζ |) + (γ − log 2) + r′ +O(r′ log r′)) (2.30)

where γ is the Euler constant. The logarithmic singularity in (2.30) may not be evaluated
accurately using Gauss quadrature in this situation. The algorithm for evaluating the
influence of the logarithmic singularity distributed over a panel can be found in Newman
and Sclavounos (1988). When the panel is on the free surface, special care is required for
the evaluation of Green function as is discussed in Newman (1993) and Zhu (1994). The
former is attached in the appendix.

When there are walls or when we exploit the symmetry/antisymmetry of the flow, the
velocity potentials are subject to the conditions (2.14), (2.16) or (2.17). In this case, the
image source must be placed at the reflected points of x with respect to the planes of
symmetry. The Green function is then modified to be a sum of (2.15) or (2.28) and its
image sources.

2.1.6 Linear system

The linear system, generated by implementing the solution procedure described above (for
example (2.24)), is solved by an iterative method, a block iterative method or Gauss elim-
ination. The details on the iterative method is described in Lee (1988). The relative
computational efficiency between the iterative method and Gauss elimination can be illus-
trated by the ratio of the number of floating point operations. This ratio, the former to the

latter, is O(
3KM

NEQN
). Where NEQN is the number of unknowns or the dimension of the

linear system and K is the number of iterations. M is the number of the right-hand sides
of the linear system sharing a left-hand side. (As an example, in (2.24) the number of the

10



right-hand-side vectors is the same as the number of the different wave headings of φI for a
fixed left-hand-side matrix.) In most applications the iterative method converges in 10-15
iterations and is the most efficient way to solve the linear system. Gauss elimination is not
only slower than the iterative method for large NEQN but also requires sufficiently large
core memory to store the entire matrix elements, since the LU decomposition is performed
using the core memory. On the other hand, in the iterative method, all or part of the
matrix may be stored on the auxiliary storage devise (hard disk) and then retrieved at
each iteration.

There are some problems for which the iterative method is slowly convergent or non-
convergent due to bad conditioning of the linear system. Some examples are i) barges with
shallow draft, ii) bodies with large flare and iii) multiple bodies separated by small gaps.
Another case where the iterative method may be slowly convergent is in the linear system
for the extended boundary integral equation (see Section 2.3). For these problems, Gauss
elimination or the block iterative method should be used. The block iterative method is
based on the same algorithm as the iterative method, but Gauss elimination is applied
locally for the specified diagonal blocks. At each stage of the iterations, the back substitu-
tion is performed for the diagonal blocks. This accelerates the rate of convergence as the
dimension of the block increases. The limiting case is the same as Gauss elimination. The
opposite limit is the case when the dimension of the blocks is one, which is identical to the
iterative method. The block iterative method requires core memory to store the elements
of one block for LU decomposition.

2.1.7 Removal of Irregular Frequencies

The integral equations (2.18-22) have nonunique solutions at the common irregular fre-
quencies corresponding to the Dirichlet eigen-frequencies for the closed domain defined
by the body boundary, and the interior free surface, Si. The eigenmodes correspond to
the solution with the homogeneous Dirichlet condition on SB and the linear free-surface
condition on Si. Numerical solutions of these equations are erroneous near the irregular
frequencies. The extended boundary integral equation method is applied to remove the
irregular frequency effect from the velocity potentials in (2.18-20).

The extended boundary integral equations for φk are

2πφk(x) +
∫∫

SB

dξξξφk(ξξξ)
∂G(ξξξ;x)

∂nξξξ
+

∫
Sf

dξξξφ′
k(ξξξ)

∂G(ξξξ;x)

∂nξξξ
=

∫∫
SB

dξξξnkG(ξξξ;x) (2.31a)

−4πφ′
k(x) +

∫∫
SB

dξξξφk(ξξξ)
∂G(ξξξ;x)

∂nξξξ
+

∫
Sf

dξξξφ′
k(ξξξ)

∂G(ξξξ;x)

∂nξξξ
=

∫∫
SB

dξξξnkG(ξξξ;x) (2.31b)

where φ′
k is an artificial velocity potential defined in the interior domain. Equations

(2.31a) and (2.31b) are for x on SB and Si, respectively. These two equations are solved
simultaneously for φk on SB and φ′

k on Si. We discard φ′
k after we solve the equations,

since only φk on SB is physically relevant.
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The equations for the diffraction potential φD are given by

2πφD(x) +
∫∫

SB

dξξξφD(ξξξ)
∂G(ξξξ;x)

∂nξξξ
+

∫
Sf

dξξξφ′
D(ξξξ)

∂G(ξξξ;x)

∂nξξξ
= 4πφI(x) (2.32a)

−4πφ′
D(x) +

∫∫
SB

dξξξφD(ξξξ)
∂G(ξξξ;x)

∂nξξξ
+

∫
Sf

dξξξφ′
D(ξξξ)

∂G(ξξξ;x)

∂nξξξ
= 4πφI(x) (2.32b)

The scattering potential takes the same form as the radiation potential but −∂φI

∂n
replaces nk on the right-hand side of the equations (2.31a) and (2.32b).

The extended boundary integral equation for the source formulation of the radiation
or scattering problem takes a form

2πσ(x) +
∫∫

SB

dξξξσ(ξξξ)
∂G(ξξξ;x)

∂nξξξ
+

∫
Sf

dξξξσ′(ξξξ)
∂G(ξξξ;x)

∂nξξξ
= g(x) (2.33a)

−4πσ′(x) +
∫∫

SB

dξξξσ(ξξξ)
∂G(ξξξ;x)

∂nξξξ
+

∫
Sf

dξξξσ′(ξξξ)
∂G(ξξξ;x)

∂nξξξ
= −V (x) (2.33b)

where g(x) = nk (g(x) = −∂φI

∂n
) for the radition (scattering) problem. The proper

condition of the function V (x) is discussed in Lee et al (1995).
The details of the derivation of these equations are described in Kleinman (1982), Lee

et al (1995) and Zhu (1994). Zhu (1994) also makes a comparison with other methods
for the removal of the irregular frequency effect and demonstrates the effectiveness of the
present method.
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Chapter 3

THE SECOND-ORDER PROBLEM

From the quadratic interaction of the two linear wave components of the frequencies ωi

and ωj in the discrete spectrum (1.11)1, we have the second-order waves of the frequency
components ωi + ωj and ωi − ωj in (1.12). In this Chapter we restrict our attention to
the solution of the second-order boundary value problem, i.e. the second-order potential.
Other second-order quantities, such as the quadratic second-order force , obtainable from
the first-order solution, are discussed in Chapter 4.

The second-order velocity potential Φ(2)(x, t) is subject to the free surface condition

∂2Φ(2)

∂t2
+ g

∂Φ(2)

∂z
= QF (x, y; t) (3.1)

and the body boundary condition

∂Φ(2)

∂n
= QB(x; t) (3.2)

where the inhomogeneous right-hand-side of the second-order free-surface condition
(3.1) defines the quadratic forcing function (Newman (1977, Section 6.4))

QF =
1

g

∂Φ(1)

∂t

∂

∂z
(
∂2Φ(1)

∂t2
+ g

∂Φ(1)

∂z
) − ∂

∂t
(∇Φ(1) · ∇Φ(1)) (3.3)

QF is to be evaluated on z = 0. The forcing function on the body boundary is given
by (Ogilvie (1983))

QB = −∂Φ
(2)
I

∂n
+ n · ∂H

∂t
x + (ααα(1) × n) · (∂(ξξξ

(1) + ααα(1) × x)

∂t
−∇Φ(1))

−n · ((ξξξ(1) + ααα(1) × x) · ∇)∇Φ(1) +
6∑

k=1

∂ξ
(2)
k

∂t
nk (3.4)

1When body is not fixed, the first-order motion affects the second-order solution as shown in the
equation (3.4) below.
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and it is to be evaluated on the mean body boundary. H in (3.4) is the quadratic
components of the coordinate transformation matrix due to the rotation of the body and it
takes a form (3.14) and (3.15), for sum- and differency-frequency problems. In (3.4), Φ

(2)
I is

referred to as the second-order incident wave potential. This is the second-order potential
in the absence of the body and will be discussed in Section 3.2. nk is the appropriate
component of n for the translational modes and of a component of (x×n) for the rotational
modes.

In the following evaluations of second-order products of two first-order oscillatory quan-
tities, use is made of the relation

Re(Aeiωit)Re(Beiωjt) =
1

2
Re[(Aeiωit)(Beiωjt +B∗e−iωjt)] (3.5)

where (∗) denotes the complex conjugate.
In accordance with the definition of the second-order potential (1.12), Q is expressed

as

Q(x, t) = Re
∑

i

∑
j

[
Q+

ij(x)ei(ωi+ωj)t +Q−
ij(x)ei(ωi−ωj)t

]
(3.6)

With the symmetry condition,

Q+
ij = Q+

ji and Q−
ij = Q−∗

ji (3.7)

The other second-order quantities such as the motion amplitude ξξξ(2) = ξ±ij are expressed
in a form of (3.6) with the symmetry condition (3.7). With this in mind, we will omit the
subscript ij hereafter.

From combining (1.11) and (3.3), we have the expressions for the complex amplitudes
of the free-surface forcing functions. Sum- and difference- frequency forcings on z = 0 are
given by

Q+
F =

i

4g
ωiφi(−ω2

j

∂φj

∂z
+ g

∂2φj

∂z2
) +

i

4g
ωjφj(−ω2

i

∂φi

∂z
+ g

∂2φi

∂z2
)

−1

2
i(ωi + ωj)∇φi · ∇φj (3.8)

and

Q−
F =

i

4g
ωiφi(−ω2

j

∂φ∗
j

∂z
+ g

∂2φ∗
j

∂z2
) − i

4g
ωjφ

∗
j(−ω2

i

∂φi

∂z
+ g

∂2φi

∂z2
)

−1

2
i(ωi − ωj)∇φi · ∇φ∗

j (3.9)

For future reference, we note that the first-order potential φi and φj in (3.8-9), consist
of the incident wave potential (φI) and the body disturbances (φB = φS + φR). Thus
we may decompose Q±

F into the quadratic interactions of the two incident wave potentials
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(Q±
II), the incident and the body disturbance waves (Q±

IB), and two body disturbance waves
(Q±

BB) such that
Q±

F = Q±
II +Q±

IB +Q±
BB (3.10)

Next we consider the sum- and difference-frequency forcing on the body boundary.
They are given by

Q+
B = − ∂φ+

I

∂n
+
i(ωi + ωj)

2
n ·H+x

+
1

4
[(αααi × n) · (iωj(ξξξj + αααj × x) −∇φj) + (αααj × n) · (iωi(ξξξi +αααi × x) −∇φi)]

− 1

4
n · [((ξξξi + αααi × x) · ∇)∇φj + ((ξξξj + αααj × x) · ∇)∇φi] (3.11)

and

Q−
B = − ∂φ−

I

∂n
+
i(ωi − ωj)

2
n ·H−x

+
1

4
[(αααi × n) · (−iωj(ξξξ

∗
j + ααα∗

j × x) −∇φ∗
j) + (ααα∗

j × n) · (iωi(ξξξi + αααi × x) −∇φi)]

− 1

4
n · [((ξξξi +αααi × x) · ∇)∇φ∗

j + ((ξξξ∗j + ααα∗
j × x) · ∇)∇φi] (3.12)

The sum- and difference-frequency components of the last term of (3.4),

Q±
B = i(ωi ± ωj)

∑
k

ξ±nk (3.13)

are omitted from (3.11-12), since they are not a quadratic function of the first-order so-
lution. These are proportional to the second-order motion and can be treated separately
from the rest of body forcing as is discussed below.

The matrices H± which account for the rotational motion of the body are given by

H+ =
1

2

⎛
⎜⎝
−(α2iα2j + α3iα3j) 0 0
α1iα2j + α1jα2i −(α1iα1j + α3iα3j) 0
α1iα3j + α1jα3i α2iα3j + α2jα3i −(α1iα1j + α2iα2j)

⎞
⎟⎠ (3.14)

H− =
1

2

⎛
⎜⎝
−(α2iα

∗
2j + α3iα

∗
3j) 0 0

α1iα
∗
2j + α∗

1jα2i −(α1iα
∗
1j + α3iα

∗
3j) 0

α1iα
∗
3j + α∗

1jα3i α2iα
∗
3j + α∗

2jα3i −(α1iα
∗
1j + α2iα

∗
2j)

⎞
⎟⎠ (3.15)

As in the first-order problem, it is convenient to decompose the total second-order
potential into three components: the second order incident wave potential (φ±

I ), the second-
order scattering wave potential (φ±

S ) and the second-order radiation potential (φ±
R). We

define φ±
I as the potential that satisfies the second-order free surface condition in absence

of the body. φ±
R describes the disturbance due the second-order motion of the body and
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is linearly proportional to the motion amplitude. It can be decomposed into the mode
dependent components

φ±
R = i(ωi ± ωj)

6∑
k=1

ξkφk (3.16)

where the unit-amplitude radiation velocity potential φk is defined in the same way as φk

in Chapter 2. The rest of the second-order potential is defined to be φ±
S , whether the

body is fixed or moving. This decomposition is in accordance with the convention for the
first-order problem where the wave exciting force is the pressure force due to the sum of
the incident and scattering waves.

3.1 Boundary Value Problem

The total second-order potential φ± satisfies Laplace’s equation in z < 0 and the condition
on the sea bottom (equations (2.7) and (2.9a-9b)). The boundary condition on the free
surface, on the body boundary and at the far field are specified below for each component
potential.

The incident wave potential is subject to

−(ωi ± ωj)
2φ±

I + g
∂φ±

I

∂z
= Q±

II on z = 0 (3.17)

The unit amplitude radiation potential is subject to

−(ωi ± ωj)
2φk + g

∂φk

∂z
= 0 on z = 0 (3.18)

and
∂φk

∂n
= nk (3.19)

on the mean body boundary SB.
Finally, the scattering potential is subject to

−(ωi ± ωj)
2φ±

S + g
∂φ±

S

∂z
= Q±

IB +Q±
BB on z = 0 (3.20)

and

∂φ±
S

∂n
= Q±

B (3.21)

At the far field φ±
R satisfies the same radiation condition as that for φR of the first-order.

For φ±
S , we apply the ‘weak radiation condition’ suggested by Molin (1979). Thus based

on the asymptotic behaviours of G and Q±
F (in other words, from the behaviours of φi and

φj), the surface integral at the far field can be shown to vanish with the result shown in
(3.28). The detailed analysis is in Molin (1979).
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3.2 The Second-order Incident Waves

Each of the two first-order incident waves is defined by the amplitude A, frequency ω, and
vector wavenumber K with Cartesian components (κ cosβ, κ sin β, 0). Here β is the angle
of incidence relative to the x−axis. The first-order incident wave potential (2.1) can be
written in the form

φI =
igA

ω
Z(κz)e−iK·x (3.22)

On z = 0, the first- and the second-derivatives of Z in vertical direction are

[∂Z(κz)

∂z

]
z=0

= ν and
[∂2Z(κz)

∂z2

]
z=0

= κ2 (3.23)

Combining (3.22) with (3.8-9) gives

Q+
II = −1

2
ig2AiAj exp(−i(Ki + Kj) · x)

[(κ2
j − ν2

j

2ωj

)
+

(κ2
i − ν2

i

2ωi

)
+

(ωi + ωj)

ωiωj
(Ki · Kj − νiνj)

]
(3.24)

and

Q−
II =

1

2
ig2AiA

∗
j exp(−i(Ki − Kj) · x)

[(κ2
j − ν2

j

2ωj

)
−

(κ2
i − ν2

i

2ωi

)
− (ωi − ωj)

ωiωj

(
Ki · Kj + νiνj

)]
(3.25)

Solutions for the second-order incident-wave potential follow from (3.17) in the form

φ±
I =

Q±
II(x, y)Z(κ±ijz)

−(ωi ± ωj)2 + gκ±ij tanhκ±ijh
(3.26)

where

κ±ij = |Ki ±Kj | (3.27)

Note that in infinite water depth, QII = 0 if βi = βj. Thus the sum frequency incident
wave potential φ+

I vanishes in unidirectional regular and irregular waves.

3.3 The Second-order Scattering Waves

The solution for the second-order scattering potential, φ±
S , is obtained from Green’s integral

equation
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2πφ±
S (x) +

∫ ∫
SB

φ±
S (ξξξ)

∂G(x; ξξξ)

∂nξ
dS =

∫ ∫
SB

Q±
B(ξξξ)G(x; ξξξ)dS

+
1

g

∫ ∫
SF

Q±
F (ξξξ)G(x; ξξξ)dS (3.28)

where G is the wave source potential defined in (2.25) and (2.28).
After the solution of (3.28), φ±

S on the free surface and in the fluid domain can be
obtained from

4πφ±
S (x) +

∫ ∫
SB

φ±
S (ξξξ)

∂G(x; ξξξ)

∂nξ

dS =
∫ ∫

SB

Q±
B(ξξξ)G(x; ξξξ)dS

+
1

g

∫ ∫
SF

Q±
F (ξξξ)G(x; ξξξ)dS (3.29)

The integral equation (3.28) is solved by the panel method. The left-hand side of (3.28)
is identical to the integral equation for the first-order potential and thus the discrete form
of it is the same as that of (2.24) (but with G corresponding to the same frequency ω and
wavenumber as φ±

S ).
The evaluation of the integrals on the right hand side is described below. We consider

the integral over SB first. For a fixed body, the evaluation Q±
B(x) is simple, since it contains

only the normal velocity due to φ±
I which are derived in Section 3.2. When the body is

not fixed, we first modify the terms involving the double spacial derivative of the first-
order velocity potential by applying Stokes’s theorem to avoid the inaccurate numerical
evaluation of the second-order derivatives based on the lower order panel method (Lee and
Zhu (1993)).

∫∫
SB

dSG{n · [(ξξξ + ααα× x) · ∇]∇φ} =
∫∫

SB

dS[n · (ξξξ + ααα× x)](∇φ · ∇G)

+
∫∫

SB

dSG{n · [(∇φ · ∇)(ξξξ + ααα× x)]} −
∫∫

SB

dS
∂φ

∂n
[(ξξξ + ααα× x) · ∇G]

+
∫

WL
dl ·G[∇φ× (ξξξ + ααα× x)] (3.30)

After substituting (3.30) into Q±
B, the integral over SB is represented by a sum of the

integral over each panel assuming Q±
B(x) is constant on each panel. Q±

B(x) is evaluated
on the centroids of the panels. The waterline is approximated by line segments (consisting
of the sides of the panels adjacent to the free surface) and Q±

B(x) is evaluated on the
midpoints of the segments.

The free-surface integral which is displayed as the last term in (3.28) will be considered
next in which the ‘quadratic forcing function’ Q±

F is given by (3.8-9). For the purposes
of numerical evaluation, the free-surface integral is evaluated separately in two domain
divided by a partition circle of radius ρ = b. b issufficiently large to neglect the effect of
the evanescent waves outside the circle. Here ρ =

√
x2 + y2. Following the methodology of

18



Kim and Yue(1989), the integration in the inner domain ρ < b is carried out numerically.
In the outer domain (b ≤ ρ) both the Green function and the asymptotics of the first-
order potentials are expanded in Fourier-Bessel series. After integrating the trigonometric
functions with respect to the angular coordinate, the free-surface integrals are reduced
to the sum of the line integrals with respect to the radial coordinate ρ. The method of
integration on the inner domain is described below and that on the outer domain follows
in the next Section.

In the inner domain, in order to avoid the evaluation of second-order derivatives of the
first-order potentials in (3.8-9), the surface integral is transformed, using Gauss theorem,
to a form involving only the first-order derivatives and line integrals around the waterline
(WL) and the partition circle (PC) as is shown below.

∫∫
SF

φi
∂2φj

∂z2
GdS = −

∫∫
WL+PC

φi(∇φj · n)Gdl

+
∫∫

SF

[(∇φi · ∇φj)G+ φi(∇φj · ∇G)]dS (3.31)

where SF denotes only the inner domain of the free surface. The divergence ∇ and the
normal vector n must be interpreted in the two dimensional sense on the z = 0 plane.

The line integrals over WL and PC are carried out in a similar way to the line integral
in (3.30). To achieve a better computational efficiency for the remaining surface integral,
we divide the inner domain further into two parts separated by a circle of radius ‘a′ with
a < b. a is sufficiently large to enclose the body. Inside this circle, the free surface is
discretized with quadrilateral panels, in an analogous manner to the body surface. Thus
the integration on this region is the sum of the integral over each panels assuming the
constant Q±

F on each panel evaluated at the centroid. The domain outside the circle of
radius a to the partition circle forms an annulus. The integral on this domain is carried out
by Gauss-Chebyshev quadrature in the azimuthal direction and Gauss-Legendre quadrature
in the radial direction as discussed in Lee and Zhu (1993).

When the field point x on the body and the source point ξξξ on the annulus are close, the
Rankine singularity of G(x; ξξξ) renders Gauss-Chebyshev quadrature inefficient. Discussion
on the selection of the optimum a is provided in Chapter 11 of the WAMIT User Manual
(1995). The analysis on the integral over the far-field free surface is described in detail in
Newman (1991) which is included in the Appendix
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Chapter 4

THE FIRST- AND
SECOND-ORDER FORCES

The expressions for the first- and second-order forces are derived from direct integration of
the fluid pressure over a body boundary in Section 4.1. By making use of Green’s theorem,
part of the forces can be obtained without solving the scattering potential. The first-order
Haskind exciting force and the second-order force via indirect approach are discussed in
Section 4.2. The equations of motion for the first- and second-order problem are derived
in Section 4.3.

4.1 Hydro-static and -dynamic Force and Moment

4.1.1 Coordinate system

We consider three coordinate systems. X = (X, Y, Z) is a global coordinate system and
with Z = 0 the undisturbed free-surface. The positive Z axis points upward. x = (x, y, z)
is a body-fixed coordinate system and z also is positive upward when the body is at rest.
We introduce a third coordinate system which is fixed in space and coincides with “x at
rest”. This coordinate system is denoted by x̂ = (x̂, ŷ, ẑ). Note that X = (X, Y, Z) and
x̂ = (x̂, ŷ, ẑ) are inertial reference frames but x = (x, y, z) is not. The origin of x̂ may be
displaced from the free-surface and Zo denotes the Z-coordinate of the origin of x̂.

4.1.2 Coordinate transform

The position vectors in the x̂− and x− coordinate systems are related to each other by
linear transformation

x̂ = ξξξ + T tx (4.1)
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and the normal vector by
n̂ = T tn (4.2)

In (4.1-2), T t is the transpose of T = T3T2T1 and T1, T2 and T3 take forms

T1 =




1 0 0
0 cosα1 sinα1

0 − sinα1 cosα1




T2 =




cosα2 0 − sinα2

0 1 0
sinα2 0 cosα2


 (4.3)

T3 =




cosα3 sinα3 0
− sinα3 cosα3 0

0 0 1




ξξξ = (ξ1, ξ2, ξ3) and ααα = (α1, α2, α3) are the translational and rotational displacements
of x(-coordinate system) with respect to x̂, respectively. They also represent the mo-
tion amplitudes of the body in the order of surge-sway-heave and roll-pitch-yaw. Further
discussion on T can be found in Ogilvie (1983).

4.1.3 Pressure integration

In the following derivation, it is understood that the pressure, the velocity potential and
the body motion amplitudes are functions of time, though the time t does not appear
explicitly.

The total pressure at x̂ is given by Bernoulli’s equation

P(x̂) = −ρ[Φt(x̂) +
1

2
∇Φ(x̂) · ∇Φ(x̂) + g(ẑ + Zo)] (4.4)

The hydro-static and -dynamic force and moment are obtained from the integration of
the pressure over the instantaneous wetted surface.

F =
∫∫

ŜB

P (x̂)n̂dS (4.5)

and

M =
∫∫

ŜB

P (x̂)(x̂ × n̂)dS (4.6)

where ŜB denotes the instantaneous wetted body boundary.
The pressure on the exact body surface (x̂ ∈ ŜB) may be approximated by Taylor

expansion with respect to the mean body surface (x ∈ SB)

P(x̂) = P (x) + [ξξξ + (T t − I)x] · ∇P (x) + ... (4.7)

21



Substituting (4.7) into (4.1-2), we have

x̂ = x + ξξξ(1) + ααα(1) × x +Hx + ξξξ(2) + ααα(2) × x +O(A3) (4.8)

n̂ = n + ααα(1) × n +Hn + ααα(2) × n +O(A3) (4.9)

The cross product of (4.8) and (4.9) then takes a form

x̂ × n̂ = x × n + ξξξ(1) × n + ααα(1) × (x × n) + ξξξ(1) × (ααα(1) × n)

+ H(x × n) + ξξξ(2) × n + ααα(2) × (x × n) +O(A3) (4.10)

From (4-4), (4-7) and (4.11), the pressure is expressed by the values on the mean body
position

P(x̂) = −ρ{g(z + Zo) + [Φ
(1)
t (x) + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]

+ [
1

2
∇Φ(1)(x) · ∇Φ(1)(x) + (ξξξ(1) + ααα(1) × x) · ∇Φ

(1)
t (x) + gHx · ∇z]

+ [Φ
(2)
t (x) + g(ξ

(2)
3 + α

(2)
1 y − α

(2)
2 x)]} +O(A3) (4.11)

H in (4.7-11) is the second-order component of T t and it takes a form

H =



−1

2((α
(1)
2 )2 + (α

(1)
3 )2) 0 0

α
(1)
1 α

(1)
2 −1

2
((α

(1)
1 )2 + (α

(1)
3 )2) 0

α
(1)
1 α

(1)
3 α

(1)
2 α

(1)
3 −1

2
((α

(1)
1 )2 + (α

(1)
2 )2)


 (4.12)

Substituting the expansions (4.7-11) into (4.5-6), we have the series expansion of the
integrals (4.5-6).

4.1.4 Hydrostatic force and moment of O(1)

These are the buoyancy force and moment when the body is at rest and are expressed by

F = −ρg
∫ ∫

SB

(z + Zo)ndS

(4.13)

M = −ρg
∫ ∫

SB

(z + Zo)(x × n)dS = −ρg
∫ ∫

SB

[(z + Zo)x] × ndS

The following relations are invoked frequently in this Chapter.

−
∫ ∫

S
ψndS =

∫ ∫ ∫
V
∇ψdV

−
∫ ∫

S
n × ψdS =

∫ ∫ ∫
V
∇× ψdV (4.14)

∇× (z + Zo)x = k × x
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where S is a closed surface consisting of SB and the waterplane area Awp. V denotes
the volume of the body.

Using the relations (4.14), the force and moment are expressed in familiar forms

F = ρgV k

(4.15)

M = ρgV (ybi− xbj)

where xb and yb are the x and y coordinates of the center of buoyancy.
In (4.15), i, j, and k are the unit vectors in x̂ coordinate system.

4.1.5 Linear force and moment

The linear force and moment are obtained from

F(1) = − ρ
∫ ∫

SB

nΦ
(1)
t dS

− ρg
∫ ∫

SB

(ααα(1) × n)(z + Zo)dS

− ρ
∫ ∫

SB

ng(ξ
(1)
3 + α

(1)
1 y − α

(1)
2 x)dS

(4.16)

M(1) = − ρ
∫ ∫

SB

(x × n)Φ
(1)
t dS

− ρg
∫ ∫

SB

(x × n)(ξ
(1)
3 + α

(1)
1 y − α

(1)
2 x)dS

− ρg
∫ ∫

SB

(ξξξ(1) × n)(z + Zo)dS

− ρg
∫ ∫

SB

[ααα(1) × (x × n)](z + Zo)dS

In (4.16), the first terms are the hydrodynamic force and moment and the rest are the
hydrostatic. Following the decomposition (2.5), we consider component potentials such

that Φ(1) = Φ
(1)
I + Φ

(1)
S + Φ

(1)
R = Φ

(1)
D + Φ

(1)
R . The hydrodynamic force and moment are

divided into two components: the “wave exciting force” due to Φ
(1)
D and the force due to

Φ
(1)
R expressed in terms of the added mass and damping coefficients.

The integrals of the hydrostatic pressure can be simplified by applying (4.14) and their
variations with the results

F(1) = − ρ
∫ ∫

SB

Φ
(1)
t ndS − ρgAwp(ξ

(1)
3 + α

(1)
1 yf − α

(1)
2 xf )k
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(4.17)

M(1) = − ρ
∫ ∫

SB

(x × n)Φ
(1)
t dS

− ρg[−V ξ(1)
2 + Awpyfξ

(1)
3 + (V zb + L22)α

(1)
1 − L12α

(1)
2 − V xbα

(1)
3 ]i

− ρg[ V ξ
(1)
1 − Awpxfξ

(1)
3 − L12α

(1)
1 + (V zb + L11)α

(1)
2 − V ybα

(1)
3 ]j

where Lij is the second moment over the waterplane area. For example, L12 =
∫ ∫

Awp

xydS.

xf and yf are the coordinates of the center of floatation.
Following (1.10), the force can be represented by a discrete spectrum (the moment takes

an identical form and is omitted here)

F(1) = Re
∑
j

F
(1)
j eiωjt (4.18)

4.1.6 Second-order force and moment

The second-order force and moment are obtained from

F(2) = − ρg
∫ ∫

SB

(z + Zo)HndS − ρ
∫ ∫

SB

(ααα(1) × n)[Φ
(1)
t + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]dS

− ρ
∫ ∫

SB

[
1

2
∇Φ(1) · ∇Φ(1) + (ξξξ(1) + ααα(1) × x) · ∇Φ

(1)
t ]ndS − ρg

∫ ∫
SB

(Hx · k)ndS

+
1

2
ρg

∫
WL

[η(1) − (ξ
(1)
3 + α

(1)
1 y − α

(1)
2 x)]2

√
1 − n2

zdl

− ρgAwp(ξ
(2)
3 + α

(2)
1 yf − α

(2)
2 xf )k

− ρ
∫ ∫

SB

Φ
(2)
t ndS

(4.19)

M(2) = 1
2

ρg
∫

wl
[η(1) − (ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]2

√
1 − n2

z (x × n)dl

− ρ
∫ ∫

SB

[
1

2
∇Φ(1) · ∇Φ(1) + (ξξξ(1) + ααα(1) × x) · ∇Φ

(1)
t ](x × n)dS

− ρ
∫ ∫

SB

(ξξξ(1) × n)[Φ
(1)
t + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]dS

− ρg
∫ ∫

SB

ξξξ(1) × (ααα(1) × n)(z + Zo)dS

− ρ
∫ ∫

SB

ααα(1) × (x × n)[Φ
(1)
t + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]dS

− ρg
∫ ∫

SB

(z + Zo)H(x × n)dS − ρg
∫ ∫

SB

(Hx · k)(x × n)dS

− ρgi[−V ξ(2)
2 + Awpyfξ

(2)
3 + (V zb + L22)α

(2)
1 − L12α

(2)
2 − V xbα

(2)
3 ]

− ρgj[ V ξ
(2)
1 −Awpxfξ

(2)
3 − L12α

(2)
1 + (V zb + L11)α

(2)
2 − V ybα

(2)
3 ]
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− ρ
∫ ∫

SB

(x × n)Φ
(2)
t dS

We apply (4.14) and their variations to the hydrostatic pressure integrals of (4.19) and
make use of the following relations to simplify (4.19).

−ρ
∫ ∫

SB

(ααα(1) × n)[Φ
(1)
t + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]dS

= ααα× F (1) + ρgααα×
∫ ∫

SB

(ααα(1) × n)(z + Zo)dS

= ααα× F (1) + ρgV [−α(1)
1 α

(1)
3 i− α

(1)
2 α

(1)
3 j + ((α

(1)
1 )2 + (α

(1)
2 )2)k]

(4.20)

−ρ
∫ ∫

SB

(ξξξ(1) × n)[Φ
(1)
t + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]dS

= ξξξ(1) × F (1) + ρg
∫ ∫

SB

ξξξ(1) × (ααα(1) × n)(z + Zo)dS

−ρ
∫ ∫

SB

ααα(1) × (x × n) [Φ
(1)
t + g(ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x)]dS

= ααα(1) ×M (1) + ρgααα(1) × {
∫ ∫

SB

(ξξξ(1) × n)(z + Zo)dS +
∫ ∫

SB

[ααα(1) × (x × n)](z + Zo)dS}
= ααα(1) ×M (1) − ρgV ααα(1) × (ξξξ(1) × k) − ρgV ααα(1) × [ααα(1) × (ybi− xbj)]

The second-order force or moment due to Φ(2) is decomposed into a part due to Φ
(2)
I +

Φ
(2)
S and the other part due to Φ

(2)
R as in the first-order. Then the force and moment (4.19)

take forms

F(2) = Fq + Fp

− ρgAwp(ξ
(2)
3 + α

(2)
1 yf − α

(2)
2 xf)k

− ρ
∫ ∫

SB

n
∂Φ

(2)
R

∂t
dS

(4.21)

M(2) = Mq + Mp

− ρgi[−V ξ(2)
2 + Awpyfξ

(2)
3 + (V zb + L22)α

(2)
1 − L12α

(2)
2 − V xbα

(2)
3 ]

− ρgj[V ξ
(2)
1 − Awpxfξ

(2)
3 − L12α

(2)
1 + (V zb + L11)α

(2)
2 − V ybα

(2)
3 ]

− ρ
∫ ∫

SB

(x × n)
∂Φ

(2)
R

∂t
dS

where the subscript q denotes the force and moment due to the quadratic interaction of
the first-order solution and p due to the second-order potential. The quadratic force and
moment are defined by
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Fq =
1

2
ρg

∫
wl

[η(1) − (ξ
(1)
3 + α

(1)
1 y − α

(1)
2 x)]2

√
1 − n2

zndl

− ρ
∫ ∫

SB

[
1

2
∇Φ(1) · ∇Φ(1) + (ξξξ(1) + ααα(1) × x) · ∇Φ

(1)
t ]ndS

+ ααα(1) × F (1) − ρgAwp[α
(1)
1 α

(1)
3 xf + α

(1)
2 α

(1)
3 yf +

1

2
((α

(1)
1 )2 + (α

(1)
2 )2)Zo]k

(4.22)

Mq =
1

2
ρg

∫
wl

[η(1) − (ξ
(1)
3 + α

(1)
1 y − α

(1)
2 x)]2

√
1 − n2

z (x × n)dl

− ρ
∫ ∫

SB

[
1

2
∇Φ(1) · ∇Φ(1) + (ξξξ(1) + ααα(1) × x) · ∇Φ

(1)
t ](x × n)dS

+ ξξξ(1) × F (1) + ααα(1) ×M (1)

+ ρg(−V ξ(1)
1 α

(1)
3 + V α

(1)
1 α

(1)
2 xb − V α

(1)
2 α

(1)
3 zb − 1

2
V ((a

(1)
1 )2 − (a

(1)
3 )2)yb

−α(1)
1 α

(1)
3 L12 − α

(1)
2 α

(1)
3 L22 − 1

2
((α

(1)
1 )2 + (α

(1)
2 )2)ZoAwpyf)i

+ ρg(−V ξ(1)
2 α

(1)
3 + V α

(1)
1 α

(1)
3 zb +

1

2
V ((a

(1)
2 )2 − (a

(1)
3 )2)xb

+α
(1)
1 α

(1)
3 L11 + α

(1)
2 α

(1)
3 L12 +

1

2
((α

(1)
1 )2 + (α

(1)
2 )2)ZoAwpxf )j

+ ρg(V ξ
(1)
1 α

(1)
1 + V ξ

(1)
2 α

(1)
2 + V α

(1)
2 α

(1)
3 xb − V α

(1)
1 α

(1)
3 yb)k

The second-order potential force and moment are given by

Fp = −ρ
∫ ∫

SB

∂(Φ
(2)
I + Φ

(2)
S )

∂t
ndS

(4.23)

Mp = −ρ
∫ ∫

SB

(x × n)
∂(Φ

(2)
I + Φ

(2)
S )

∂t
dS

Adopting a form analogous to (1.12) the second-order force F(2) can be expressed as (the
moment takes an identical form),

F(2) = Re
∑

i

∑
j

F+
ije

i(ωi+ωj)t + F−
ije

i(ωi−ωj)t (4.24)

4.1.7 Haskind Exciting Force and Indirect Second-order Force

The linear wave exciting force and the second-order potential force Fp may be evaluated not
from the scattering solution but from the appropriate component of the radiation solution.
The first-order force evaluated in this way is referred to as the Haskind exciting force and
the second-order force as the indirect force.
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4.1.8 Haskind exciting force

We consider a complex amplitude of a spectral component of the first-order wave exciting
force. The force for the mode j is given by

Fj = −iωρ
∫ ∫

SB

nj(φI + φS)dS (4.25)

From Green’s theorem, applied to φS and a component of the radiation potential φj,
we have

0 =
∫ ∫

SB

(
∂φj

∂n
φS − ∂φS

∂n
φj)dS (4.26)

It can be shown that integrals over the free surface, on the bottom and at the far field
vanish due to the boundary conditions for φS and φj on these surfaces. (Newman (1977,
Section 6.18)) Thus they do not appear in (4.26).

Upon substituting (4.26) into (4.25) with the conditions (2.10) and (2.11), the Haskind
relation follows in the form

Fj = −iωρ
∫ ∫

SB

(njφI − ∂φI

∂n
φj)dS (4.27)

4.1.9 Indirect second-order force

We consider a complex amplitude of a spectral component of the second-order potential
force Fp. The force for the mode j is given by

F±
pj = −i(ωi ± ωj)ρ

∫ ∫
SB

nj(φ
±
I + φ±

S )dS (4.28)

From Green’s theorem, applied to φ±
S and φ±

j , we have

0 =
∫ ∫

SB

(
∂φ±

j

∂n
φ±

S − ∂φ±
S

∂n
φ±

j )dS +
∫ ∫

SF

(
∂φ±

j

∂z
φ±

S − ∂φ±
S

∂z
φ±

j )dS (4.29)

It can be shown that the integrals on the sea bottom and at the far field vanish due to
the boundary conditions. Upon substituting (3.18-21) into (4.29), we have

∫ ∫
SB

njφ
±
SdS =

∫ ∫
SB

Q±
Bφ

±
j dS +

1

g

∫ ∫
SF

(Q±
IB +Q±

BB)φ±
j dS (4.30)

Thus the force can be obtained from

F±
pj = −i(ωi ± ωj)ρ[

∫ ∫
SB

(njφ
±
I +Q±

Bφ
±
j )dS +

1

g

∫ ∫
SF

(Q±
IB +Q±

BB)φ±
j dS] (4.31)

The radiation potential φ±
j with the frequency ωi±ωj is often referred to as an assisting

potential.
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4.2 Equations of Motion

The translational and rotational motions of the body are governed by

mx̂gtt = FT (4.32)

and

Lt = MT (4.33)

In (4.32), x̂gtt is the acceleration of the center of mass of the body and FT is the total
force due to the fluid pressure, the body mass and the external force. In (4.33), MT is the
total moment about the x̂g and Lt is the time rate of change of the angular momentum in
the x̂ coordinate system.

It is convenient to express (4.33) in the body-fixed coordinate system, x, in which the
moment of inertia is time invariant. Following Ogilvie(1983),

Igωωωt + ωωω × Igωωω = TMT (4.34)

where Ig is the moment of inertia about the center of mass, ωωωt(ωωω) the angular acceler-
ation (velocity) and T the tranform matrix (4.3).

If we are interested in the motion about the origin of the body coordinate system, xo,
which may differ from the center of mass, the following relations are to be substitued into
(4.34).

Igωωω = Iωωω −mxg × (ωωω × xg) (4.35)

and

MT = Mo − x̂g × FT (4.36)

where I and Mo are the moment of inertia and moment about o.
(4.32) and (4.34) with (4.35-6), describe the motion of the rigid body.
To derive the first- and the second-order equations of motion, we express x̂g, FT , TMT

and ωωω in perturbation series.

x̂g = xg + ξξξ + ααα× xg +Hxg +O(A3) (4.37)

F = F (1) + F
(1)
B + F

(1)
E + F (2) + F

(2)
B + F

(2)
E +O(A3) (4.38)

TMT = M (1) − xg × F (1) +M (2) − xg × F (2) − ξξξ(1) × F (1) − ααα(1) ×M (1)

+ xg × (ααα(1) × F (1)) + Γ(1) + Γ(2) +O(A3) (4.39)

In (4.38-39), the subscript B denotes the gravitational force on the body mass, E external
force which is assumed to be expandable in a perturbation series. The force without
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subscript is the hydro-static and -dynamic force derived in Sections 4.1 and 4.2. Γ(1) and
Γ(2) are the first- and second-order components of

Γ = T [M
(1)
B +M

(2)
B +M

(1)
E +M

(2)
E − x̂g × (F

(1)
E + F

(2)
E ) +O(A3)] (4.40)

Equilibrium, when the body is at rest, leads to the conditions

F (0) + F
(0)
B + F

(0)
E = 0 and M (0) +M

(0)
B +M

(0)
E = 0 (4.41)

The moment ME consists of a pure torque Mτ and the moment due to the external
force

ME = Mτ + x̂e × FE (4.42)

The angular velocity in the x̂ coordinate system can be obtained by linear superposition
of the contributions from time derivatives of Euler-angles.

ω̂ωω =



α1t

0
0


 + T t

1




0
α2t

0


 + T t

1T
t
2




0
0
α3t


 (4.43)

and angular velocity in the x coordinate system, ωωω, is obtained from

ωωω = T tω̂ωω (4.44)

Thus we have at the first-order

ωωω(1) =



α

(1)
1t

α
(1)
2t

α
(1)
3t


 (4.45)

and at the second-order

ωωω(2) =



α

(2)
1t + α

(1)
2t α

(1)
3

α
(2)
2t − α

(1)
1t α

(1)
3

α
(2)
3t + α

(1)
1t α

(1)
2


 (4.46)

Upon substitution of (4.35-46) into (4.32) and (4.34), the equations of motion at each
order follows. These are given by

[(M +ME + A){ ξξξ
(1)
tt

ααα
(1)
tt

} + (B +BE){ ξξξ
(1)
t

ααα
(1)
t

} + (C + CE){ ξξξ
(1)

ααα(1) }] = { F
(1)
exc

M (1)
exc

}(4.47)

and

[(M +ME + A){ ξξξ
(2)
tt

ααα
(2)
tt

} + (B +BE){ ξξξ
(2)
t

ααα
(2)
t

} + (C + CE){ ξξξ
(2)

ααα(2) }] = { F
(2)
exc

M (2)
exc

}(4.48)
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where A and B are the added mass and damping coefficients and they depend on the
frequency. ME , BE and CE are the external force components which are proportional to
the unknown body acceleration, velocity and the motion amplitude, respectively. They
may or may not be different for the first and the second-order motions. M and C are the
same in (4.47) and (4.48) and they are given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg I11 I12 I13

mzg 0 −mxg I21 I22 I23

−myg mxg 0 I31 I32 I33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.49)

C = g

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρAwp ρAwpyf −ρAwpxf 0
0 0 ρAwpyf ρ(V zb + L22) −mzg −ρL12 −ρV xb +mxg

0 0 −ρAwpxf −ρL12 ρ(V zb + L11) −mzg −ρV yb +myg

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.50)
Finally the force and moment on the right-hand side of (4.47) are

F (1)
exc = −ρ

∫ ∫
SB

Φ
D(1)
t ndS + (ΣF

(1)
E )ex

(4.51)

M (1)
exc = −ρ

∫ ∫
SB

(x× n)Φ
D(1)
t dS + (ΣM (1)

τ + Σxe × F
(1)
E )ex

and those on the right-hand side of (4.48) are

F (2)
exc = Fq + Fp −mHttxg + (ΣF

(2)
E )ex

(4.52)

M (2)
exc = Mq +Mp − ξξξ(1) × F (1) − ααα(1) ×M (1)

+ ρg[V ξ
(1)
1 α

(1)
3 i+ V ξ

(1)
2 α

(1)
3 j − (V ξ

(1)
1 α

(1)
1 − V ξ

(1)
2 α

(1)
2 )k]

+ mg[(
1

2
((α

(1)
1 )2 − (α

(1)
3 )2)yg − α

(1)
1 α

(1)
2 xg + α2α3zg)i

− (
1

2
((α

(1)
2 )2 − (α

(1)
3 )2)xg + α1α3zg)j + (α1α3yg − α2α3xg)k]

+ xg × (ααα(1) × F (1)) −mxg ×Httxg − Igααα
q
tt

− ααα
(1)
t × Igααα

(1)
t + Σ[Hxe × F

(0)
E − ααα(1) × ((ααα(1) × xe) × F

(0)
E )]

+ {Σ[M (2)
τ + xe × F

(2)
E −ααα(1) ×M (1)

τ − (xe − xg) × (ααα(1) × F
(1)
E )]}ex
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The subscript ex denotes the part of the force and moment which is not linearly propor-
tional to the motion amplitude, the velocity or the acceleration at each order. In (4.52),
αααq

tt is a vector and its components are the time derivatives of the second terms of the vector
elements of (4.46).
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NOTES ON BODIES OR PANELS IN THE FREE SURFACE

JNN - September 1993

1. INTRODUCTION

These notes document recent work intended to (1) extend WAMIT to bodies where part or all of the
submerged surface is in the plane of the free surface, with zero draft; and (2) removal of irregular
frequencies by adding panels in the free surface interior to the body with an imposed homogeneous
Neumann (or Dirichlet) condition. The latter development was intended to follow the theory in
the report by Kleinman, denoted here by [K], but differences and questions have arisen which are
the principal motivation for the notes.

The notation of the WAMIT User Manual is followed. The most important differences from [K]
are the definition of the unit normal vector, here taken to be into the body and out of the fluid
domain, and the Green function G, defined here by equation (2.4)

G(x; ξξξ) =
1
r

+
1
r′

+
2K
π

∫ ∞

0

dk
ek(z+ζ)

k − K
J0(kR) (1.1)

r2 = (x − ξ)2 + (y − η)2 + (z − ζ)2 (1.2)

r′2 = (x − ξ)2 + (y − η)2 + (z + ζ)2, (1.3)

where J0(x) is the Bessel function of zero order. The correponding function γ in [K] is related to
G via the equation G = −2πγ. For simplicity the depth is assumed infinite.

The velocity potential φ is governed by Laplace’s equation in the fluid domain, subject to a pre-
scribed Neumann condition φn = V on the body surface Sb, the linear free surface condition

φz − Kφ = 0, on z = 0 (1.4)

and a radiation condition at infinity. The wavenumber is K = ω2/g, and g is the acceleration of
gravity.

The Green function G satisfies the free surface condition (1.4) with respect to both coordinate
systems. More explicitly,

Gz − KG = 0, on z = 0 (1.5)

Gζ − KG = 0, on ζ = 0 (1.6)

It is not obvious that these relations can be applied in the limit when r = r′ = 0, i.e. when the
source and field points coincide on the free surface. In the vicinity of this singular point it is known
that G is of the form

G(x; ξξξ) =
1
r

+
1
r′

− 2KeK(z+ζ)
(
log(r′ + |z + ζ|) + (γ − log 2) + r′ + O(r′2 log r′)

)
(1.7)
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If this expansion is substituted in (1.5) or (1.6), it can be confirmed that the same relations apply
even at the singular point. Thus there is no ‘delta function’ in the free-surface conditions (1.5) and
(1.6).

2 CONVENTIONAL INTEGRAL EQUATION FOR THE VELOCITY POTENTIAL

In the ‘normal’ case of a floating body, the submerged surface Sb is entirely below the plane z = 0,
except for a line of intersection of the two surfaces. The fluid domain D+ is exterior to the body,
below the free surface, and extends to infinity horizontally and vertically. The complementary
domain D− is inside the body, below the plane z = 0.

With the above definitions, it follows from Green’s theorem that

2πα(x)φ(x) +
∫∫

Sb

φ(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ. (2.1)

Here, as in [K], α is equal to 2 for points in D+, 1 for points on Sb, and 0 for points in D−.

The definitions of α in (2.1) are consistent with the ‘jump conditions’ corresponding to the singu-
larity 1/r in G. Thus, in the limits where the point x approaches Sb from D±,

I±(φ) = lim
x→S±

∫∫
Sb

φ(ξξξ)
∂

∂nξ

1
r
dξξξ = ∓2πφ +

∫∫
−−−

Sb

φ(ξξξ)
∂

∂nξ

1
r
dξξξ (2.2)

Here the symbol
∫∫− denotes, as in the simpler Cauchy principal-value integral, that a surface of

vanishingly small area including the singular point r = 0 is excluded from the integral. This is the
appropriate interpretation of the integral on the left side of (2.1) for the case where x is on Sb.
Thus (2.1) is rewritten in the more explicit form

2πφ(x) +
∫∫
−−−

Sb

φ(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ (x ∈ Sb) (2.3)

3 INTEGRAL EQUATIONS FOR Sb IN THE FREE SURFACE

The objective here is to extend (2.1) to the case where part or all of the body surface coincides
with the free surface. Examples of such bodies are a floating caisson where the interior ‘roof’ is in
the plane z = 0, and a ‘cicular dock’ consisting of a disk of zero draft.

In these cases, for those portions of Sb lying in the free surface, the two Rankine singularities in the
Green function coalesce, and the effect is to double the jump in (2.2). However caution is required
to correctly account for the jump when the image source 1/r′ is included. For completeness, in
relation to the corresponding equations [K, 51b-52b], we write the following derivatives and limits:

∂

∂z

(1
r

)
=

−(z − ζ)
r3

(3.1a)

∂

∂z

( 1
r′

)
=

−(z + ζ)
r3

(3.1b)
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∂

∂ζ

(1
r

)
=

(z − ζ)
r3

(3.1c)

∂

∂ζ

( 1
r′

)
=

−(z + ζ)
r3

(3.1d)

Thus
∂

∂z

(1
r

+
1
r′

)
=

−2z
r3

on ζ = 0 (3.1e)

∂

∂ζ

(1
r

+
1
r′

)
= 0 on ζ = 0 (3.1f)

In the limit z → 0− (3.1e) tends to a delta function with area 4π, but (3.1f) is identically zero
and does not contribute a jump. The former is consistent with [K] equation (51b), but the latter
contradicts the jump in (52b).

I will proceed assuming (3.1f) is correct. Two alternative derivations are given for the case where
Sb coincides with the plane z = 0.

First start with (2.1), with the field point in the fluid domain, below the body surface, and approach
the surface at a point where the surface coincides with the plane z = 0. Prior to the limit, the free
term in (2.1) has the value 4πφ. In the limit the same value applies, since the singular contribution
to the kernel from the two Rankine singularties is

∂

∂nξ

(1
r

+
1
r′

)
Sb

=
∂

∂ζ

(1
r

+
1
r′

)
ζ=0

= 0 (3.1)

Thus, (2.1) is applicable to such a body surface with the understanding that α = 2 when the point
x is on the body surface, in the plane z = 0. Note in this case that the unit normal is positive
upwards, pointing from the fluid domain toward the complementary domain above the free surface.
In the case of a body which is entirely in the plane z = 0, the resulting integral equation is

4πφ(x) +
∫∫
−−−

Sb

φ(ξξξ)
∂G

∂ζ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ. (x ∈ Sb) (3.2)

As an alternative approach, consider a body with small finite draft T , e.g. with a flat bottom and
vertical sides. In this case (2.3) is applicable on the exact body. Neglecting the contribution from
the vertical sides, the contribution from the image source to the left-hand side of (2.3) is

∫∫
Sb

φ(ξξξ)
∂

∂ζ

( 1
r′

)
dξξξ =

∫∫
Sb

φ(ξξξ)
−(z + ζ)

r3
dξξξ on z = ζ = −T (3.2a)

In the limit T → 0 the kernel tends to a delta function with area 2π, augmenting the free term in
(2.3) and thus in agreement with (3.2).

Using the free-surface boundary conditions (1.5 - 1.6), two equivalent integral equations may be
written in the forms

4πφ(x) +
∫∫
−−−

Sb

φ(ξξξ)
∂G

∂z
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ. (x ∈ Sb) (3.3)
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and

4πφ(x) + K

∫∫
Sb

φ(ξξξ)Gdξξξ =
∫∫

Sb

V (ξξξ)Gdξξξ. (x ∈ Sb) (3.4)

Equation (3.4) is most effective for numerical computations since the logarithmic singularity in
(1.7) is not amplified by differentiation. WAMIT has been modified in accordance with (3.4), and
used to solve the circular dock problem. The results appear to be consistent. It is essential in this
case to use the ‘ILOG=1’ option to integrate the logarithmic singularity in (1.7) analytically over
each panel in the free surface.

Presumably the integral equations (3.2-4) have no homogeneous solutions, or irregular frequencies.
This can be inferred from the fact that the interior volume between Sb and the free surface is zero.

4 EXISTENCE OF IRREGULAR FREQUENCIES

Hereafter the body is assumed to have nonzero submerged volume, to intersect the free surface
normally, and no portion of its surface lies in the plane z = 0 except for the normal intersection
along a waterline contour. Define Si as the portion of the plane z = 0 interior to Sb. The union
of Sb and Si is the closed surface S, with the unit normal defined in a consistent manner to point
into the interior volume D−. Define an interior potential φ′ which is harmonic in D−, and satisfies
the free surface condition (1.4) on Si. Applying Green’s theorem in the usual manner,

2π
(
α(x) − 2

)
φ′(x) +

∫∫
Sb

φ′(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V ′(ξξξ)Gdξξξ. (4.1)

Here V ′ = φ′
n is the corresponding normal velocity on Sb.

Now assume that the interior potential φ′ satisfies the homogeneous Dirichlet condition φ′ = 0 on
Sb. It is known that nontrivial solutions exist for certain body shapes at discrete eigenfrequencies,
and it is assumed that the same is true for general bodies. Physically, these are analogous to
‘sloshing modes’ corresponding to standing waves inside the body, except that the homogeneous
body boundary condition is Dirichlet instead of Neumann. For such solutions the normal velocity
V ′ is generally nonzero on Sb, but from (4.1) and the boundary condition φ′ = 0 on Sb it follows
that ∫∫

Sb

V ′(ξξξ)Gdξξξ = 0 (x ∈ Sb ∪ D+) (4.2)

This proves that there is a discrete set of eigenfrequencies (i.e. the irregular frequencies) where the
corresponding normal velocity V ′ is orthogonal to G on the body.

Next we define an external ‘radiation’ potential φ which satisfies the usual conditions outside the
body, as in §1, with the specified normal derivative φn = V = V ′ on Sb. This is essentially a
radiation problem with a special distribution of normal velocity on the body. The solution is
assumed to exist and to be nontrivial and unique, just as for any more conventional radiation (or
scattering) problem. However for this particular external potential the right-hand side of (2.3) will
vanish when x is on Sb. It follows that φ is a homogeneous solution of (2.3). This proves the
existence of irregular frequencies in the context of the exterior potential problem.
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5 EXTENDED-BOUNDARY INTEGRAL EQUATIONS

In [K] it is shown that while (2.3) may have homogeneous solutions at the irregular frequencies,
there is (at most) one solution of the integral equation (2.1) in the extended domain S = Sb ∪ Si.
Thus we augment (2.3) by the additional equation

∫∫
Sb

φ(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ (x ∈ Si) (5.1)

A more useful second-kind equation [K, 86] is derived which, in the present notation, takes the
form

2πΦ(x) +
∫∫
−−−

Sb

Φ(ξξξ)
∂G

∂nξ
dξξξ +

1
2

∫∫
−−−

Si

Φ(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ (x ∈ Sb ∪ Si) (5.2)

In [K] it is shown (using the questionable jump relation (52b)) that (5.2) has (at most) only one
solution, and that this solution is equal to φ on Sb.

At a more pragmatic level, our numerical experience indicates that the appropriate replacement
for (5.2) is

2πΦ(x) +
∫∫
−−−

Sb

Φ(ξξξ)
∂G

∂nξ
dξξξ − 1

2

∫∫
−−−

Si

Φ(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ (x ∈ Sb ∪ Si) (5.3)

The only difference is the sign preceding the integral over Si.

In fact, the numerical tests are performed with a modified version of WAMIT where the influence
functions correspond to the slightly different integral equations

2πΦ(x) +
∫∫
−−−

Sb

Φ(ξξξ)
∂G

∂nξ
dξξξ +

∫∫
Si

Φ(ξξξ)
∂G

∂nξ
dξξξ =

∫∫
Sb

V (ξξξ)Gdξξξ (x ∈ Sb) (5.4a)

−4πΦ(x) +
∫∫

Sb

Φ(ξξξ)
∂G

∂nξ
dξξξ − K

∫∫
Si

Φ(ξξξ)Gdξξξ =
∫∫

Sb

V (ξξξ)Gdξξξ (x ∈ Si) (5.4b)

Equations (5.3) and (5.4) are equivalent after multiplying the unknown Φ by a factor -2 in the
domain of Si, and using (1.6) to replace the normal derivative of G on Si in (5.4b). This should be
borne in mind in judging the relevance of the statement that the numerical tests support (5.3a-b),
but not (5.2).

Note that the first and third terms in (5.4b) are precisely the same as (minus) the left side of (3.2),
suggesting a possible connection with the absence of irregular frequencies in the dock problem.

Finally we want to show that there are no homogeneous solutions of (5.4), that is no nontrivial
solutions Φ0 of the pair of integral equations

2πΦ0(x) +
∫∫
−−−

Sb

Φ0(ξξξ)
∂G

∂nξ
dξξξ +

∫∫
Si

Φ0(ξξξ)
∂G

∂nξ
dξξξ = 0 (x ∈ Sb) (5.5a)
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−4πΦ0(x) +
∫∫

Sb

Φ0(ξξξ)
∂G

∂nξ
dξξξ +

∫∫
Si

Φ0(ξξξ)
∂G

∂nξ
dξξξ = 0 (x ∈ Si) (5.5b)

For this purpose, asume that Φ0 is a nontrivial solution of (5.5) and define the following two
potentials (which together are used in place of [K 88]):

φb =
∫∫

Sb

Φ0(ξξξ)
∂G

∂nξ
dξξξ (x ∈ D−) (5.6a)

φi =
∫∫

Si

Φ0(ξξξ)
∂G

∂nξ
dξξξ = −K

∫∫
Si

Φ0Gdξξξ (x ∈ D− ∪ Sb ∪ D+) (5.6b)

The following conditions apply on Sb:

φb = 2πΦ0(x) +
∫∫
−−−

Sb

Φ0(ξξξ)
∂G

∂nξ
dξξξ (x ∈ Sb) (5.7a)

φi =
∫∫

Si

Φ0(ξξξ)
∂G

∂nξ
dξξξ (x ∈ Sb) (5.7b)

Thus, from (5.5a),
φb + φi = 0 (x ∈ Sb) (5.8)

The following conditions apply as z → 0− on Si:

φb =
∫∫

Sb

Φ0(ξξξ)
∂G

∂nξ
dξξξ (x ∈ Si) (5.9a)

φi =
∫∫
−−−

Si

Φ0(ξξξ)
∂G

∂nξ
dξξξ (x ∈ Si) (5.9b)

The free-surface condition (1.5) can be invoked to show that

φbz = Kφb = K

∫∫
Sb

Φ0(ξξξ)
∂G

∂nξ
dξξξ (x ∈ Si) (5.10a)

where (5.9a) is used in the latter relation. For the analogous derivative of φi, the jump associated
with (3.1e) gives an extra contribution and it follows from the last form of (5.6b) that

φiz = Kφi − 4πKΦ0 = K

∫∫
−−−

Si

Φ0(ξξξ)
∂G

∂nξ
dξξξ − 4πKΦ0 (x ∈ Si) (5.10b)

Combining (5.10a) and (5.10b), and invoking (5.5b),

φbz + φiz = 0 (x ∈ Si) (5.11)

¿From (5.8) and (5.11), and the uniqueness proof for solutions of Laplace’s equation with combined
Dirichlet and Neumann boundary conditions, it follows that

φb + φi = 0 (x ∈ D−) (5.12)

The remainder of the proof follows as in [K 89-95].
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WAMIT V3.1S (Second-Order Module) – Theoretical Background

by J. N. Newman
Department of Ocean Engineering, MIT

Cambridge, MA 02139, USA

28 March 1991

1. INTRODUCTION

The WAMIT Second-Order Module, currently Version 3.1S, is designed to solve the second-
order boundary-value problem for the interaction of monchromatic or bichromatic incident
waves with a prescribed body. As in the first-order program (Version 3.1ID), the body is
defined by an ensemble of panels. In the second-order solution the boundary conditions
on both the body and free surface must be re-considered, with particular care required
in the case of the free surface. This document is intended to describe the corresponding
analysis in sufficient detail to explain the logic of the program. As the second-order module
is extended and refined this document will be modified in parallel. The date and version
number above should be referenced in this context.

In the notation to be followed the subscripts i, j, k are used to denote the frequencies of
different linear solutions, and �, m, n are used to denote the Fourier components of the
same solutions, respectively. κ will be used for the wavenumber, to distinguish from the
integer subscript k. First-order components such as the velocity potentials φj in (1.2) are
distinguished from second-order components φij by the number of subscripts.

The velocity potential is expanded in the form

Φ(x, t) = εΦ(1)(x, t) + ε2Φ(2)(x, t) + · · · (1.1)

where x is a fixed Cartesian coordinate system, and t denotes time. Assuming a discrete
spectrum with frequency components ωj > 0,

Φ(1)(x, t) = Re
∑

j

φj(x)eiωjt (1.2)

Φ(2)(x, t) = Re
∑

i

∑
j

[
φ+

ij(x)ei(ωi+ωj)t + φ−
ij(x)ei(ωi−ωj)t

]
(1.3)
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The second-order potentials φ±
ij can be defined to satisfy the symmetry relations

φ+
ij = φ+

ji and φ−
ij = φ−∗

ji (1.4)

since anti-symmetric components will not contribute to (1.3).

The free-surface boundary conditions satisfied by these potentials are

∂2Φ(1)

∂t2
+ g

∂Φ(1)

∂z
= 0 (1.5)

∂2Φ(2)

∂t2
+ g

∂Φ(2)

∂z
= Q(x, y; t) (1.6)

on z = 0. Here the inhomogeneous right-hand-side of the second-order free-surface condi-
tion (1.6) defines the quadratic forcing function

Q =
1
g

∂Φ(1)

∂t

∂

∂z
(
∂2Φ(1)

∂t2
+ g

∂Φ(1)

∂z
) − ∂

∂t
(∇Φ(1) · ∇Φ(1)) (1.7)

where the right-hand-side is to be evaluated on z = 0. In the following evaluations of
second-order products of first-order oscillatory quantities use is made of the relation

Re(Aeiωit)Re(Beiωjt) =
1
2
Re(Aeiωit)(Beiωjt + B∗e−iωjt)

where (∗) denotes the complex conjugate. Adopting a form for Q analogous to (1.3),

Q(x, t) = Re
∑

i

∑
j

[
Q+

ij(x)ei(ωi+ωj)t + Q−
ij(x)ei(ωi−ωj)t

]
(1.8)

As in (1.4) it is appropriate to symmetrize the functions Q±
ij such that

Q+
ij = Q+

ji and Q−
ij = Q−∗

ji (1.9)

Combining (1.2) and (1.7) gives the expressions

Q+
ij =

i

4g
ωiφi(−ω2

j

∂φj

∂z
+ g

∂2φj

∂z2
) +

i

4g
ωjφj(−ω2

i

∂φi

∂z
+ g

∂2φi

∂z2
)

− 1
2
i(ωi + ωj)∇φi · ∇φj

(1.10)

and
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Q−
ij =

i

4g
ωiφi(−ω2

j

∂φ∗
j

∂z
+ g

∂2φ∗
j

∂z2
) − i

4g
ωjφ

∗
j (−ω2

i

∂φi

∂z
+ g

∂2φi

∂z2
)

− 1
2
i(ωi − ωj)∇φi · ∇φ∗

j

(1.11)

where the right-hand-sides of (1.10-11) are evaluated on z = 0. With these definitions the
free-surface boundary condition for the second-order potential is given by

−(ωi ± ωj)2φ±
ij + g

∂φ±
ij

∂z
= Q±

ij (1.12)

on z = 0.
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2. INCIDENT WAVES

The incident wave potential ΦI is defined to be the total first- and second-order velocity
potential that would exist in the absence of the body. Each first-order component is defined
by the amplitude Aj , frequency ωj , and vector wavenumber Kj with Cartesian components
(κj cos βj , κj sin βj , 0). Here βj is the angle of incidence relative to the x−axis. The total
first-order velocity potential is

Φ(1)
I = Re ig

∑
j

Aj

ωj
Z(κjz) exp i(ωjt − Kj · x) (2.1)

Here, for a fluid of depth h,

Z(κjz) =
cosh(κj(z + h))

cosh(κjh)
(2.2)

In accordance with the first-order free-surface condition,

κj tanh(κjh) = ω2
j /g ≡ νj (2.3)

It is helpful to anticipate the relations

[∂Z(κjz)
∂z

]
z=0

= νj and
[∂2Z(κjz)

∂z2

]
z=0

= κ2
j (2.4)

Combining (2.1) and (1.10-11) gives

Q+
ij = − 1

2
ig2AiAj exp(−i(Ki + Kj) · x)

[(κ2
j − ν2

j

2ωj

)
+

(κ2
i − ν2

i

2ωi

)
+

(ωi + ωj)
ωiωj

(Ki · Kj − νiνj)
] (2.5)

and

Q−
ij =

1
2
ig2AiA

∗
j exp(−i(Ki − Kj) · x)

[(κ2
j − ν2

j

2ωj

)
−

(κ2
i − ν2

i

2ωi

)
− (ωi − ωj)

ωiωj

(
Ki · Kj + νiνj

)] (2.6)

Solutions for the second-order components of the incident-wave potential follow from (1.12)
in the form

φ±
ij =

Q±
ij(x, y)Z(κ±

ijz)

−(ωi ± ωj)2 + gκ±
ij tanhκ±

ijh
(2.7)
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where

κ±
ij = |Ki ± Kj| (2.8)

Subsequently in the analysis of the free-surface integral of the second-order problem, a
Fourier-Bessel expansion of the first-order incident-wave potential will be required. In
terms of the polar coordinates x = ρ cos θ, y = ρ sin θ the appropriate expansion is

φIj =
igAj

ωj
Z(κjz)

∞∑
n=0

εn(−i)nJn(κjρ) cosn(θ − βj) (2.9)

where ε0 = 1, εn = 2 for (n ≥ 1), and Jn is the first-kind Bessel function of order n. It will
be convenient to redefine the coefficients in (2.9), writing this equation in the form

φIj = Z(κjz)
∞∑

n=0

Jn(κjρ)[Ac
jn cos nθ + As

jn sin nθ] (2.10)

where the coefficients are

(
Ac

jn

As
jn

)
=

igAj

ωj
εn(−i)n

(
cos nβj

sin nβj

)
(2.11)

3. VELOCITY POTENTIAL DUE TO THE BODY

In this section general properties will be listed for the solution of the velocity potential
ΦB due to the presence of the body. This includes both the scattered potential ΦS which
accounts for the effects of the incident waves on the fixed body, and for the radiation
potential ΦR due to the motions of the body about its fixed mean position. In all cases
the decompositions and expansions (1.1-1.3) are applicable.

The boundary condition on the mean position SB of the body can be written in the generic
form

∂φ

∂n
= qB on SB (3.1)

Similarly, on the free surface,

−ω2φ + g
∂φ

∂z
= qF on z = 0 (3.2)

where ω is the frequency corresponding to the component φ.
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The solution for φ can be derived from Green’s theorem in terms of the integral equation

2πφ(x) +
∫ ∫

SB

φ(ξξξ)
∂G(x; ξξξ)

∂nξ
dS =

∫ ∫
SB

qB(ξξξ)G(x; ξξξ)dS

+
∫ ∫

SF

qF (ξξξ)G(x; ξξξ)dS

(3.3)

In this equation φ represents any first- or second-order velocity potential, subject to (3.1)
and (3.2) and a suitable radiation condition at infinity. G is the free-surface Green function
corresponding to the same frequency ω and wavenumber as φ. Since (3.3) can be applied
to an arbitrary closed surface, this equation holds on the mean position of SB and on the
plane z = 0 corresponding to the mean position of SF , and it is not necessary to apply
(3.3) to the exact boundaries of the fluid domain.

For the first-order components of the potential qF = 0, and (3.3) reduces to the conven-
tional form of the integral equation for φ on the body. In the fluid domain the solution for
each first-order component of the potential can be expressed in the form

φ(x) =
∫ ∫

SB

σ(ξξξ)G(x; ξξξ)dS (3.4)

For the formulation based on Green’s theorem, σ is the linear operator

σ =
1
4π

(
qB − φ

∂

∂n

)
(3.5)

Alternatively, in the source formulation, the parameter σ is defined as the first-order source
strength, and can be found directly as the solution of the integral equation

2πσ(x) +
∫ ∫

SB

σ(ξξξ)
∂G(x; ξξξ)

∂nx
dS = qB(x) (3.6)

In the subsequent analysis of the free-surface integral of the second-order problem, a Fourier
expansion of the first-order body potential will be required to complement (2.9) in the far-
field domain outside of a partition circle of radius b which is sufficiently large to completely
surround the body. Consider a generic wavenumber κ which may be equal to either κi, κj ,
or the wavenumber κk of the second-order potential. With the additional restriction that
κb is sufficiently large, evanascent (local) nonradiating components of the Green function
can be excluded from consideration, and

G � 2πicZ(κz)Z(κζ)H(2)
0 (κR) (3.7)

Here the function Z is defined by (2.2), R is the horizontal distance between the source
and field points (x, ξξξ), and H

(2)
0 (κR) = J0(κR) − iY0(κR) is the Hankel function of the
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second kind. (In the following analysis the superscript (2) will be deleted.) The constant
c is defined by

c =
ν2 − κ2

κ2h − ν2h + ν
cosh2(κh) =

−κ2

κ2h − ν2h + ν
(3.8)

The error in the far-field approximation (3.7) is of order exp(−CR/h) where the constant C
is greater than π/2. In the infinite-depth limit the corresponding error is of order (κR)−2,
or of order (κR)−3 in the special case where z = 0.

Graf’s addition theorem (Abramowitz & Stegun, eq. 9.1.79) may be used to expand (3.7)
in a Fourier-Bessel series analogous to (2.9):

G(x; ξξξ) � 2πicZ(κz)Z(κζ)
∞∑

n=0

εnHn(κρ)Jn(κρ′) cosn(θ − θ′) (3.9)

where ξ = ρ′ cos θ′, η = ρ′ sin θ′, and (3.9) is valid in the domain (ρ ≥ ρ′). Substituting
this result into (3.4) gives the corresponding far-field representation of the body potential

φ(x) � Z(κz)
∞∑

n=0

Hn(κρ)[Bc
n cos nθ + Bs

n sin nθ] (3.10)

where the coefficients in this expansion are

(
Bc

n

Bs
n

)
= 2πicεn

∫ ∫
SB

σ(ξξξ)Z(κζ)Jn(κρ′)
(

cos nθ′

sin nθ′

)
dS (3.11)

4. THE FREE-SURFACE INTEGRAL

The free-surface integral which is displayed as the last term in (3.3) will be considered
here, with the ‘quadratic forcing function’ qF defined by the relations (1.6-12). Since
we are considering the evaluation of the second-order velocity potential ΦB due to the
presence of the body, the incident-wave potential ΦI should be subtracted from the left
side of the free-surface conditions (1.6) and (1.12), and also from the evaluation of the
quadratic forcing function. Thus we seek to evaluate the difference between (1.10-1.11)
and (2.5-2.6), which includes terms on the right side of (1.10-1.11) due to (a) quadratic
interactions of the body potential with itself, and (b) cross-terms between ΦB and ΦI .

For purposes of numerical evaluation, the free-surface integral is composed of two parts,
separated by the partition circle of radius ρ = b. Following the methodology of Kim and
Yue, the integration in the inner domain ρ < b is carried out numerically. Thus the inner
free surface is discretized with quadrilateral panels, in an analogous manner to the body
surface. To avoid the evaluation of second-order derivatives of the first-order potentials in
(1.10-11), the surface integral is transformed using Stokes’ theorem to a form involving only
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first-order derivatives and line integrals around the inner and outer boundaries. Details
are given in the paper by Kim.

4.1. THE FREE-SURFACE INTEGRAL IN THE FAR FIELD

In the remainder of this section the ‘far-field integral’ in the domain (b ≤ ρ < ∞) is
considered. For this purpose the incident- and body-potentials are defined by the Fourier-
Bessel expansions (2.10) and (3.10), respectively.

The first task is to evaluate (1.10) and (1.11). We begin with the sum-frequency compo-
nent Q+

ij , considering first the ‘BB’ component due to quadratic interactions of the body
potential (3.10). Associating the Fourier indices (�, m) with the frequency indices (i, j)
respectively, we obtain

Q+
BiBj =

i

4

∞∑
�=0

∞∑
m=0

{[
ωi(κ2

j − ν2
j ) + ωj(κ2

i − ν2
i ) − 2(ωi + ωj)νiνj

]

H�(κiρ)Hm(κjρ)
(Bc

i� cos �θ + Bs
i� sin �θ)(Bc

jm cos mθ + Bs
jm sin mθ)

− 2(ωi + ωj)κiκjH
′
�(κiρ)H ′

m(κjρ)
(Bc

i� cos �θ + Bs
i� sin �θ)(Bc

jm cos mθ + Bs
jm sin mθ)

− 2(ωi + ωj)
�m

ρ2
H�(κiρ)Hm(κjρ)

(Bs
i� cos �θ − Bc

i� sin �θ)(Bs
jm cos mθ − Bc

jm sin mθ)
}

(4.1)

where H ′ denotes the first derivative of the Hankel function with respect to its argument.

4.2. THE FOURIER INTEGRALS IN THE ANGULAR COORDINATE

The integration with respect to the angular coordinate θ can be evaluated after multiplica-
tion by the angular components of the Green function (3.9). Thus we consider the Fourier
integrals

∫ 2π

0

Q+
ij

(
cos nθ

sin nθ

)
dθ

The only nonzero components involve the integrals

∫ 2π

0

cos �θ cos mθ cos nθdθ =
π

εn
[δn,|�−m| + δn,�+m] ≡ λ+

�mn (4.2a)

∫ 2π

0

sin �θ sin mθ cos nθdθ =
π

εn
[δn,|�−m| − δn,�+m] ≡ λ−

�mn (4.2b)
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∫ 2π

0

cos �θ sin mθ sin nθdθ =
π

ε�
[δ�,|n−m| − δ�,n+m] = λ−

mn� (4.2c)

∫ 2π

0

sin �θ cos mθ sin nθdθ =
π

εm
[δm,|n−�| − δm,n+�] = λ−

n�m (4.2d)

where δmn is the Kronecker delta function, equal to one if the subscripts are equal and
otherwise equal to zero. The factors λ defined above are nonzero if and only if � = m + n,
or m = n + �, or n = � + m.

The Fourier integrals of the quadratic forcing function (4.1) are then given by

∫ 2π

0

Q+
BiBj

(
cos nθ

sin nθ

)
dθ =

i

4

∞∑
�=0

∞∑
m=0

{[
ωi(κ2

j − ν2
j ) + ωj(κ2

i − ν2
i ) − 2(ωi + ωj)νiνj

]

H�(κiρ)Hm(κjρ)
(

Bc
i�B

c
jmλ+

�mn + Bs
i�B

s
jmλ−

�mn

Bs
i�B

c
jmλ−

n�m + Bc
i�B

s
jmλ−

mn�

)

− 2(ωi + ωj)
[
κiκjH

′
�(κiρ)H ′

m(κjρ)
(

Bc
i�B

c
jmλ+

�mn + Bs
i�B

s
jmλ−

�mn

Bs
i�B

c
jmλ−

n�m + Bc
i�B

s
jmλ−

mn�

)

+
�m

ρ2
H�(κiρ)Hm(κjρ)

(
Bc

i�B
c
jmλ−

�mn + Bs
i�B

s
jmλ+

�mn

−Bc
i�B

s
jmλ−

n�m − Bs
i�B

c
jmλ−

mn�

)]}

(4.3)

The second term, which involves derivatives of the Hankel functions, can be reduced using
the relation H ′

ν = 1
2 (Hν−1 − Hν+1). Thus

H ′
�(κiρ)H ′

m(κjρ) =
1
4

(
H�−1Hm−1 − H�−1Hm+1 + H�+1Hm+1 − H�+1Hm−1

)
(4.4)

Similarly, the third term resulting from the angular derivatives can be reduced using the
recurrence relation 2νHν/z = Hν−1 + Hν+1 to remove the factor ρ−2. Three alternative
relations result; the one which is most useful is obtained by setting ν equal to � and then
to m:

H�(κiρ)Hm(κjρ)ρ−2 =
κiκj

4�m

(
H�−1Hm−1 +H�−1Hm+1 +H�+1Hm+1 +H�+1Hm−1

)
(4.5)

Substituting (4.4-5) in (4.3) gives
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∫ 2π

0

Q+
BiBj

(
cos nθ

sin nθ

)
dθ =

i

4

∞∑
�=0

∞∑
m=0

{[
ωi(κ2

j − ν2
j ) + ωj(κ2

i − ν2
i ) − 2(ωi + ωj)νiνj

]

H�(κiρ)Hm(κjρ)
(

Bc
i�B

c
jmλ+

�mn + Bs
i�B

s
jmλ−

�mn

Bs
i�B

c
jmλ−

n�m + Bc
i�B

s
jmλ−

mn�

)

− 1
2
(ωi + ωj)κiκj

[
H�−1(κiρ)Hm−1(κjρ) + H�+1(κiρ)Hm+1(κjρ)

]
(

(Bc
i�B

c
jm + Bs

i�B
s
jm)(λ+

�mn + λ−
�mn)

(Bs
i�B

c
jm − Bc

i�B
s
jm)(λ−

n�m − λ−
mn�)

)

+
1
2
(ωi + ωj)κiκj

[
H�−1(κiρ)Hm+1(κjρ) + H�+1(κiρ)Hm−1(κjρ)

]
(

(Bc
i�B

c
jm − Bs

i�B
s
jm)(λ+

�mn − λ−
�mn)

(Bs
i�B

c
jm + Bc

i�B
s
jm)(λ−

n�m + λ−
mn�)

)}

(4.6)

The corresponding integrals for the difference-frequency function are

∫ 2π

0

Q−
BiBj

(
cos nθ

sin nθ

)
dθ =

i

4

∞∑
�=0

∞∑
m=0

{[
ωi(κ2

j − ν2
j ) − ωj(κ2

i − ν2
i ) − 2(ωi − ωj)νiνj

]

H�(κiρ)H∗
m(κjρ)

(
Bc

i�B
c∗
jmλ+

�mn + Bs
i�B

s∗
jmλ−

�mn

Bs
i�B

c∗
jmλ−

n�m + Bc
i�B

s∗
jmλ−

mn�

)

− 1
2
(ωi − ωj)κiκj

[
H�−1(κiρ)H∗

m−1(κjρ) + H�+1(κiρ)H∗
m+1(κjρ)

]
(

(Bc
i�B

c∗
jm + Bs

i�B
s∗
jm)(λ+

�mn + λ−
�mn)

(Bs
i�B

c∗
jm − Bc

i�B
s∗
jm)(λ−

n�m − λ−
mn�)

)

+
1
2
(ωi − ωj)κiκj

[
H�−1(κiρ)H∗

m+1(κjρ) + H�+1(κiρ)H∗
m−1(κjρ)

]
(

(Bc
i�B

c∗
jm − Bs

i�B
s∗
jm)(λ+

�mn − λ−
�mn)

(Bs
i�B

c∗
jm + Bc

i�B
s∗
jm)(λ−

n�m + λ−
mn�)

)}

(4.7)

It is helpful to define the factors

Ω±
ij = ωi(κ2

j − ν2
j ) ± ωj(κ2

i − ν2
i ) − 2(ωi ± ωj)νiνj (4.8)
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and
Λ±

ij = (ωi ± ωj)κiκj (4.9)

(These definitions differ by multiplicative factors from the corresponding parameters used
by Kim.)

Equations (4.6) and (4.7) can then be written in a more compact form, after noting that
the first factor contained within large parentheses in each equation is equivalent to half
the sum of the second and third factors. Thus

∫ 2π

0

Q+
BiBj

(
cos nθ

sinnθ

)
dθ =

i

8

∞∑
�=0

∞∑
m=0

{[
Ω+

ijH�(κiρ)Hm(κjρ)

− Λ+
ij

(
H�−1(κiρ)Hm−1(κjρ) + H�+1(κiρ)Hm+1(κjρ)

)]
(

(Bc
i�B

c
jm + Bs

i�B
s
jm)(λ+

�mn + λ−
�mn)

(Bs
i�B

c
jm − Bc

i�B
s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω+

ijH�(κiρ)Hm(κjρ) + Λ+
ij

(
H�−1(κiρ)Hm+1(κjρ) + H�+1(κiρ)Hm−1(κjρ)

)]
(

(Bc
i�B

c
jm − Bs

i�B
s
jm)(λ+

�mn − λ−
�mn)

(Bs
i�B

c
jm + Bc

i�B
s
jm)(λ−

n�m + λ−
mn�)

)}

(4.10)

Similarly for the difference-frequency integral

∫ 2π

0

Q−
BiBj

(
cos nθ

sinnθ

)
dθ =

i

8

∞∑
�=0

∞∑
m=0

{[
Ω−

ijH�(κiρ)H∗
m(κjρ)

− Λ−
ij

(
H�−1(κiρ)H∗

m−1(κjρ) + H�+1(κiρ)H∗
m+1(κjρ)

)]
(

(Bc
i�B

c∗
jm + Bs

i�B
s∗
jm)(λ+

�mn + λ−
�mn)

(Bs
i�B

c∗
jm − Bc

i�B
s∗
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω−

ijH�(κiρ)H∗
m(κjρ) + Λ−

ij

(
H�−1(κiρ)H∗

m+1(κjρ) + H�+1(κiρ)H∗
m−1(κjρ)

)]
(

(Bc
i�B

c∗
jm − Bs

i�B
s∗
jm)(λ+

�mn − λ−
�mn)

(Bs
i�B

c∗
jm + Bc

i�B
s∗
jm)(λ−

n�m + λ−
mn�)

)}

(4.11)

4.3. THE INTEGRALS IN THE RADIAL COORDINATE

In the context of the free-surface integral represented by the last term in (3.3) it is necessary
to multiply the preceding results by the Hankel functions in (3.9), and integrate in the radial
domain b < ρ < ∞. Since the differential element of surface area is ρdρdθ, the integrals
which must be evaluated in (4.10) and (4.11) are of the basic form
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∫ ∞

b

H�(κiρ)Hm(κjρ)Hn(κkρ)ρdρ = b2

∫ ∞

1

H�(αx)Hm(βx)Hn(γx)xdx ≡ b2F�mn(α, β, γ)

(4.12)

Additional integrals will also be required to analyze the interaction between the body and
incident-wave potentials, where one of the first pair of Hankel functions in (4.12) is replaced
by the corresponding Bessel function Jν , of the same order and with the same argument.
Similarly, in (4.11), the second Hankel function is replaced by its complex conjugate or the
Hankel function of the first kind.

To make the above results more explicit, we define the following nondimensional integrals:

F (1,2)
�mn =

∫ ∞

1

H
(2)
� (αx)H(1,2)

m (βx)H(2)
n (γx)xdx (4.13a)

G(1,2)
�mn =

∫ ∞

1

J�(αx)H(1,2)
m (βx)H(2)

n (γx)xdx (4.13b)

H(1,2)
�mn =

∫ ∞

1

H
(2)
� (αx)Jm(βx)H(2)

n (γx)xdx (4.13c)

(The superscript for the third function is superfluous, but it is retained for uniformity in
the notation.) With these definitions applied, and the contributions included from the
incident-wave potential, the appropriate radial integrals are
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∫ ∞

b

H(2)
n (κkρ)ρdρ

∫ 2π

0

Q+
ij(ρ, θ)

(
cos nθ

sin nθ

)
dθ =

i

8
b2

∞∑
�=0

∞∑
m=0

{[
Ω+

ijF (2)
�,m,n(κib, κjb, κkb) − Λ+

ij

(F (2)
�−1,m−1,n(κib, κjb, κkb)

+ F (2)
�+1,m+1,n(κib, κjb, κkb)

)]((Bc
i�B

c
jm + Bs

i�B
s
jm)(λ+

�mn + λ−
�mn)

(Bs
i�B

c
jm − Bc

i�B
s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω+

ijF (2)
�,m,n(κib, κjb, κkb) + Λ+

ij

(F (2)
�−1,m+1,n(κib, κjb, κkb)

+ F (2)
�+1,m−1,n(κib, κjb, κkb)

)]((Bc
i�B

c
jm − Bs

i�B
s
jm)(λ+

�mn − λ−
�mn)

(Bs
i�B

c
jm + Bc

i�B
s
jm)(λ−

n�m + λ−
mn�)

)

+
[
Ω+

ijG(2)
�,m,n(κib, κjb, κkb) − Λ+

ij

(G(2)
�−1,m−1,n(κib, κjb, κkb)

+ G(2)
�+1,m+1,n(κib, κjb, κkb)

)]((Ac
i�B

c
jm + As

i�B
s
jm)(λ+

�mn + λ−
�mn)

(As
i�B

c
jm − Ac

i�B
s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω+

ijG(2)
�,m,n(κib, κjb, κkb) + Λ+

ij

(G(2)
�−1,m+1,n(κib, κjb, κkb)

+ G(2)
�+1,m−1,n(κib, κjb, κkb)

)]((Ac
i�B

c
jm − As

i�B
s
jm)(λ+

�mn − λ−
�mn)

(As
i�B

c
jm + Ac

i�B
s
jm)(λ−

n�m + λ−
mn�)

)

+
[
Ω+

ijH(2)
�,m,n(κib, κjb, κkb) − Λ+

ij

(H(2)
�−1,m−1,n(κib, κjb, κkb)

+ H(2)
�+1,m+1,n(κib, κjb, κkb)

)]((Bc
i�A

c
jm + Bs

i�A
s
jm)(λ+

�mn + λ−
�mn)

(Bs
i�A

c
jm − Bc

i�A
s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω+

ijH(2)
�,m,n(κib, κjb, κkb) + Λ+

ij

(H(2)
�−1,m+1,n(κib, κjb, κkb)

+ H(2)
�+1,m−1,n(κib, κjb, κkb)

)]((Bc
i�A

c
jm − Bs

i�A
s
jm)(λ+

�mn − λ−
�mn)

(Bs
i�A

c
jm + Bc

i�A
s
jm)(λ−

n�m + λ−
mn�)

)}

(4.14)
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∫ ∞

b

H(2)
n (κkρ)ρdρ

∫ 2π

0

Q−
ij(ρ, θ)

(
cos nθ

sin nθ

)
dθ =

i

8
b2

∞∑
�=0

∞∑
m=0

{[
Ω−

ijF (1)
�,m,n(κib, κjb, κkb) − Λ−

ij

(F (1)
�−1,m−1,n(κib, κjb, κkb)

+ F (1)
�+1,m+1,n(κib, κjb, κkb)

)]((Bc
i�B

∗c
jm + Bs

i�B
∗s
jm)(λ+

�mn + λ−
�mn)

(Bs
i�B

∗c
jm − Bc

i�B
∗s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω−

ijF (1)
�,m,n(κib, κjb, κkb) + Λ−

ij

(F (1)
�−1,m+1,n(κib, κjb, κkb)

+ F (1)
�+1,m−1,n(κib, κjb, κkb)

)]((Bc
i�B

∗c
jm − Bs

i�B
∗s
jm)(λ+

�mn − λ−
�mn)

(Bs
i�B

∗c
jm + Bc

i�B
∗s
jm)(λ−

n�m + λ−
mn�)

)

+
[
Ω−

ijG(1)
�,m,n(κib, κjb, κkb) − Λ−

ij

(G(1)
�−1,m−1,n(κib, κjb, κkb)

+ G(1)
�+1,m+1,n(κib, κjb, κkb)

)]((Ac
i�B

∗c
jm + As

i�B
∗s
jm)(λ+

�mn + λ−
�mn)

(As
i�B

∗c
jm − Ac

i�B
∗s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω−

ijG(1)
�,m,n(κib, κjb, κkb) + Λ−

ij

(G(1)
�−1,m+1,n(κib, κjb, κkb)

+ G(1)
�+1,m−1,n(κib, κjb, κkb)

)]((Ac
i�B

∗c
jm − As

i�B
∗s
jm)(λ+

�mn − λ−
�mn)

(As
i�B

∗c
jm + Ac

i�B
∗s
jm)(λ−

n�m + λ−
mn�)

)

+
[
Ω−

ijH(1)
�,m,n(κib, κjb, κkb) − Λ−

ij

(H(1)
�−1,m−1,n(κib, κjb, κkb)

+ H(1)
�+1,m+1,n(κib, κjb, κkb)

)]((Bc
i�A

∗c
jm + Bs

i�A
∗s
jm)(λ+

�mn + λ−
�mn)

(Bs
i�A

∗c
jm − Bc

i�A
∗s
jm)(λ−

n�m − λ−
mn�)

)

+
[
Ω−

ijH(1)
�,m,n(κib, κjb, κkb) + Λ−

ij

(H(1)
�−1,m+1,n(κib, κjb, κkb)

+ H(1)
�+1,m−1,n(κib, κjb, κkb)

)]((Bc
i�A

∗c
jm − Bs

i�A
∗s
jm)(λ+

�mn − λ−
�mn)

(Bs
i�A

∗c
jm + Bc

i�A
∗s
jm)(λ−

n�m + λ−
mn�)

)}

(4.15)
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The four factors which involve sums and differences of the parameters λ will now be
considered, with reference to the definitions (4.2). Excluding the special case � = m = n =
0, where

λ+
000 = 2π and λ−

000 = 0

the four factors can be simplified in the forms

(λ+
�mn + λ−

�mn) = πδ�,m+n + πδm,�+n (4.16a)

(λ−
n�m − λ−

mn�) = πδ�,m+n − πδm,�+n (4.16b)

(λ+
�mn − λ−

�mn) = πδn,�+m (4.16c)

(λ−
n�m + λ−

mn�) = πδn,�+m (4.16d)

In the three-dimensional space �, m, n, the first two factors are nonzero only on the two
planes � = m + n and m = � + n, whereas the last two factors are nonzero only on
the complementary plane n = � + m. Collectively these three planes form a cone with
triangular sections, and with its apex at the origin. The four expressions (4.16) apply also
on the intersections of each pair of adjacent planes. Thus the double sums in (4.14-15)
can be expressed in terms of the separate contributions from each of the three surfaces. A
compact form can be derived if we first define the three functionals

U
(ij)±
�m (F) = Ω±

ijF�,m,�−m(κib, κjb, κkb)

− Λ±
ij

[F�−1,m−1,�−m(κib, κjb, κkb) + F�+1,m+1,�−m(κib, κjb, κkb)
]

(4.17a)
V

(ij)±
�m (F) = Ω±

ijF�,m,m−�(κib, κjb, κkb)

− Λ±
ij

[F�−1,m−1,m−�(κib, κjb, κkb) + F�+1,m+1,m−�(κib, κjb, κkb)
]

(4.17b)
W

(ij)±
�m (F) = Ω±

ijF�,m,�+m(κib, κjb, κkb)

+ Λ±
ij

[F�−1,m+1,�+m(κib, κjb, κkb) + F�+1,m−1,�+m(κib, κjb, κkb)
]

(4.17c)

If the series are truncated at the upper limit � = M , m = M , (4.14-15) are equivalent to
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∫ ∞

b

H(2)
n (κkρ)ρdρ

∫ 2π

0

Q+
ij(ρ, θ)

(
cos nθ

sin nθ

)
dθ =

πi

8
b2

{ M∑
�=n

(1 + δ�n)
[
U

(ij)+
�m (F (2))

(
(Bc

i�B
c
jm + Bs

i�B
s
jm)

(Bs
i�B

c
jm − Bc

i�B
s
jm)

)

+ U
(ij)+
�m (G(2))

(
(Ac

i�B
c
jm + As

i�B
s
jm)

(As
i�B

c
jm − Ac

i�B
s
jm)

)

+ U
(ij)+
�m (H(2))

(
(Bc

i�A
c
jm + Bs

i�A
s
jm)

(Bs
i�A

c
jm − Bc

i�A
s
jm)

)]
m=�−n

±
M−n∑
�=0

(1 + δ�0)
[
V

(ij)+
�m (F (2))

(
(Bc

i�B
c
jm + Bs

i�B
s
jm)

(Bs
i�B

c
jm − Bc

i�B
s
jm)

)

+ V
(ij)+
�m (G(2))

(
(Ac

i�B
c
jm + As

i�B
s
jm)

(As
i�B

c
jm − Ac

i�B
s
jm)

)

+ V
(ij)+
�m (H(2))

(
(Bc

i�A
c
jm + Bs

i�A
s
jm)

(Bs
i�A

c
jm − Bc

i�A
s
jm)

)]
m=�+n

+
n−1∑
�=1

[
W

(ij)+
�m (F (2))

(
(Bc

i�B
c
jm − Bs

i�B
s
jm)

(Bs
i�B

c
jm + Bc

i�B
s
jm)

)

+ W
(ij)+
�m (G(2))

(
(Ac

i�B
c
jm − As

i�B
s
jm)

(As
i�B

c
jm + Ac

i�B
s
jm)

)

+ W
(ij)+
�m (H(2))

(
(Bc

i�A
c
jm − Bs

i�A
s
jm)

(Bs
i�A

c
jm + Bc

i�A
s
jm)

)]
m=n−�

}

(4.18)
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∫ ∞

b

H(2)
n (κkρ)ρdρ

∫ 2π

0

Q−
ij(ρ, θ)

(
cos nθ

sin nθ

)
dθ =

πi

8
b2

{ M∑
�=n

(1 + δ�n)
[
U

(ij)−
�m (F (1))

(
(Bc

i�B
∗c
jm + Bs

i�B
∗s
jm)

(Bs
i�B

∗c
jm − Bc

i�B
∗s
jm)

)

+ U
(ij)−
�m (G(1))

(
(Ac

i�B
∗c
jm + As

i�B
∗s
jm)

(As
i�B

∗c
jm − Ac

i�B
∗s
jm)

)

+ U
(ij)−
�m (H(1))

(
(Bc

i�A
∗c
jm + Bs

i�A
∗s
jm)

(Bs
i�A

∗c
jm − Bc

i�A
∗s
jm)

)]
m=�−n

±
M−n∑
�=0

(1 + δ�0)
[
V

(ij)−
�m (F (1))

(
(Bc

i�B
∗c
jm + Bs

i�B
∗s
jm)

(Bs
i�B

∗c
jm − Bc

i�B
∗s
jm)

)

+ V
(ij)−
�m (G(1))

(
(Ac

i�B
∗c
jm + As

i�B
∗s
jm)

(As
i�B

∗c
jm − Ac

i�B
∗s
jm)

)

+ V
(ij)−
�m (H(1))

(
(Bc

i�A
∗c
jm + Bs

i�A
∗s
jm)

(Bs
i�A

∗c
jm − Bc

i�A
∗s
jm)

)]
m=�+n

+
n−1∑
�=1

[
W

(ij)−
�m (F (1))

(
(Bc

i�B
∗c
jm − Bs

i�B
∗s
jm)

(Bs
i�B

∗c
jm + Bc

i�B
∗s
jm)

)

+ W
(ij)−
�m (G(1))

(
(Ac

i�B
∗c
jm − As

i�B
∗s
jm)

(As
i�B

∗c
jm + Ac

i�B
∗s
jm)

)

+ W
(ij)−
�m (H(1))

(
(Bc

i�A
∗c
jm − Bs

i�A
∗s
jm)

(Bs
i�A

∗c
jm + Bc

i�A
∗s
jm)

)]
m=n−�

}

(4.19)

Special attention is required when the integers �, m are equal to zero. Since the Bessel and
Hankel functions are odd functions of the (integer) order it follows that F (1,2)

−1,m,n = −F (1,2)
1,m,n,

and similarly for the case m = ±1 and for the integrals (4.13b,c). Thus it follows from
(4.17) that U�0 = W�0 and V0m = W0m. It can then be shown, with regard for the limits
of each sum in (4.18-19), and for the factors of two applied to the first term in each of the
first two sums, that the contributions from these equations are equivalent to those from
(4.14-15) when one or more of the integers �, m, n is equal to zero.

Note also that when n = 0 the contributions from the first two sums in (4.18-19) are
identical, giving a net contribution of twice that of the first sum in the case of the cosine
integrals (upper factors) and zero for the sine integrals (lower factors).

4.4. EVALUATION OF THE RADIAL INTEGRALS

Suitable algorithms are required to evaluate the three families of integrals defined by (4.13).
From the asymptotic approximations of the Bessel and Hankel functions it is apparent
that, for sufficiently large values of x, the integrands are proportional to x−1/2 exp(iσx),
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where the factor σ involves sums and differences of the three parameters α, β, γ. These
integrals are convergent provided σ �= 0. Hereafter it is assumed that the three parameters
α, β, γ > 0, and σ �= 0. The former assumption is appropriate since these parameters
correspond physically to the products of three positive wavenumbers with the partition
radius b. The latter assumption will be considered in future work.

Numerical integration along the semi-infinite real x-axis is not practical, due to the very
slow convergence and oscillatory feature of the integrand. These difficulties can be over-
come simply by adopting appropriate contours of integration in the complex z-plane, de-
pending on the sign of σ. To determine the appropriate contours for each of the integrals
(4.13), consideration must be given to the basic definitions H

(1,2)
ν = Jν ± iYν , where the

Bessel functions J, Y are real on the real axis, and the corresponding asymptotic approxi-
mations

H(1,2)
ν (z) �

√
2
πz

exp(±i(z − 1
2
νπ − π

4
)) (4.20)

which are valid for |z| >> 1 and |z| >> ν. When the order is large it also is necessary to
consider the complementary approximations

Jν(z) ∼ zν , Yν ∼ z−ν (4.21)

¿From the basic relations between the Hankel and Bessel functions the integrals (4.13c)
can be evaluated as one-half times the sum of the two integrals defined by (4.13a), and a
similar approach can be followed with (4.13b). Such a decomposition is essential in some
cases for the contour integrals, since for large values of the argument Jν(z) includes two
components proportional respectively to exp(±iz) which may require different choices of
the contour of integration. However when � >> αx or m >> βx it is clear from (4.21)
that severe cancellation errors will result from this approach. This difficulty is avoided by
integrating (4.13) along a finite segment of the positive real axis 1 ≤ x ≤ xmax, before
deforming the contour of integration into the complex plane. This procedure is robust
provided the parameter xmax is sufficiently large to satisfy the inequalities � ≤ αxmax and
m ≤ βxmax.

The remaining integrals are of the general form

∫ ∞

xmax

f(x)eiσxdx (4.22)

where f(x) denotes a slowly-varying function of order x−1/2, for large x, and in all cases
σ = (±α ± β − γ). If σ > 0 the contour of integration in (4.22) may be deformed in the
first quadrant of the complex plane z = x + iy, and a convenient choice is the straight line
upward parallel to the imaginary axis from z = xmax to z = xmax + i∞. Thus (4.22) is
replaced in this case by the semi-infinite integral
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∫ ∞

xmax

f(x)eiσxdx = i exp(iσxmax)
∫ ∞

0

f(xmax + iy)e−σydy, (σ > 0) (4.23)

Conversely, if σ < 0, the contour of integration may be deformed in the fourth quadrant
along a similar contour parallel to the negative imaginary axis.

For programming purposes it is convenient to modify these integrals so that in all cases
the contour of integration is in the first quadrant. Thus, when σ < 0, (4.22) is replaced by

∫ ∞

xmax

f(x)eiσxdx =
(∫ ∞

xmax

f∗(x)e−iσxdx
)∗

=

− i

∫ ∞

0

(
f∗(xmax + iy)e−iσx+σy

)∗
dy (σ < 0)

(4.24)

Note that the function f(z) is defined, apart from a multiplicative exponential factor, by
the integrands of (4.13), and the conjugate function f∗(z) therefore involves the same
integrands except that the Hankel functions of first- and second-kind are reversed.

In both the finite integral along the real axis and the semi-infinite integrals (4.23-4) nu-
merical integration is practical using adaptive Romberg quadratures to ensure a speci-
fied tolerance of accuracy. It is computationally efficient to evaluate all three integrals
(4.13a,b,c) together, for all required combinations of the orders (�, m, n), with the same
integration algorithm and different integrands. The domain of integration is subdivided,
based on the maximum value of |σ|, so that large values of this parameter do not retard
convergence. The parameter xmax is set equal to the largest value of the ratios �/α or
m/β, except that if the largest ratio is less than 1.1, xmax is set equal to one and the
integral along the real axis is skipped. For the semi-infinite integrals in y, the length of the
first segment is set equal to four divided by the maximum value of the exponential factor
σ. The length of each subsequent segment is increased in a linear manner, proportional to
the number of the segment, to take advantage of the exponentially diminishing magnitude
of the integrand in that segment. Two convergence tests are required, first within each
finite segment to determine that the order of the Romberg quadratures is sufficient, and
secondly after the (converged) integral in each segment is added to the total integral to
determine when the range of integration can be truncated. Typically a tolerance of 10−8 is
used, with absolute accuracy specified if the integral is smaller than one in absolute value,
and relative accuracy in the converse case. In the program this procedure is followed for
the complete set of required integrals, of all combinations of the orders �, m, n required in
(4.18-19) and for all three of the integrals defined in (4.13). Convergence tests are applied
to all members of this set simultaneously, and the integration of the entire set continues
until the convergence test is satisfied for the entire set. This precludes the possibility
of false convergence for one particular integrand, and permits the simultaneous recursive
evaluation of the required Bessel and Hankel functions of all orders.

Effective subroutines for the Bessel and Hankel functions are required, for both the integral
along the real axis where the arguments are all real, and also in the integrals (4.23-4) where
the arguments are in the first quadrant. These will be described separately below.
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For the functions with real argument the functions Jν(x) and Yν(x) are evaluated following
the general methodology described in Numerical Recipes, §6.4, and the Hankel functions
are evaluated from the relations J ± iY . For Jν(x) the backward recursion algorithm of
Miller (cf. Abramowitz & Stegun, pp. 385-6) is used with the starting value ν = M
chosen to be the smallest even integer M which satisfies the inequalities M > 1.36|x|+ 24
and M > N + 12, where N is the maximum order required. Normalization is based on
the Neumann series with unit value (Abramowitz & Stegun, equation 9.1.46). Numerical
experiments indicate that the accuracy of the results is at least 14 decimals, with relative
accuracy preserved for x << ν. Chebyshev expansions are used to evaluate the functions
Y0, Y1 and the functions Yν are evaluated for all required higher orders by forward recursion.

A similar backward recursion algorithm is used to evaluate the functions Jν(z) with com-
plex argument z in the first quadrant, using the same starting value M defined above
except that |x| is replaced by |z|. In this case it is appropriate to use as the normalization
relations the Neumann series for cos, sin z (Abramowitz & Stegun, equations 9.1.47-8), se-
lecting whichever of these functions has the largest absolute value to avoid instability near
the zeros on the real axis. To avoid the possibility of overflow, the subroutine evaluates
the normalized functions exp(iz)Jν(z) and applies an appropriate exponential factor to
the final integrand.

For the Hankel functions of the first kind, with complex argument z in the first quadrant,
forward recursion is used based on the starting values of order zero and one. The evaluation
of these is based on two complementary algorithms, suitable for small and large values of
|z|. For small |z| ascending series are summed to evaluate J0,1 and Y0,1, (Abramowitz
& Stegun equations 9.1.10-11), and these are then combined to form the corresponding
Hankel functions. These ascending series are used in the quadrilateral domain of the plane
z = x + iy such that x ≥ 0, 0 ≤ y ≤ 3 and x + y ≤ 8. The series are truncated with a
total of 22 terms. For larger values of z outside the quadrilateral domain, rational fraction
approximations of the form described by Luke (Table 66) are effective. To obtain sufficient
accuracy in the domain where |z| is large, the coefficients in Luke’s Tables 66.1 and 66.6
have been extended to n = 10, giving rational-fraction approximations as the ratios of
tenth-degree polynomials. Comparison of the two complementary algorithms along the
common boundary of the partition indicates that the minimum relative accuracy of this
subroutine is 14 decimals. The rational-fraction approximations are not effective for the
Hankel functions of the second kind, but the latter can be evaluated directly from the
relation H

(2)
ν = 2Jν − H

(1)
ν , using the values of Jν obtained from backward recursion.

The exponential normalization factors exp(∓iz) are applied to H
(1,2)
ν , respectively, and

corrected in the final evaluation of the integrand.

For checking purposes it is useful to derive recursion formulae for the integrals (4.13). For
this purpose we consider the more general integrals

F (µ)
�mn =

∫ ∞

1

H�(αx)Hm(βx)Hn(γx)xµdx (4.25)

where Hν denotes any of the three functions Jν , H
(1)
ν , or H

(2)
ν . These integrals are defined
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in the ordinary sense for µ < 3/2 (assuming the sum of the wavenumbers is nonzero), and
will be applied ultimately with µ = 1. Integrating the derivative of the integrand and
employing the formula H ′

ν = Hν−1 − (ν/z)Hν to differentiate the integrand in accordance
with the chain rule, it follows that

−H�(α)Hm(β)Hn(γ) = αF (µ)
�−1,m,n+βF (µ)

�,m−1,n+γF (µ)
�,m,n−1−(�+m+n−µ)F (µ−1)

�,m,n (4.26)

Using the recursion 2νHν/z = Hν−1 + Hν+1 to evaluate the last term in (4.13), with the
index ν replaced successively by �, m, n, three relations are obtained as follows:

F (µ−1)
�,m,n =

α

2�
[F (µ)

�−1,m,n +F (µ)
�+1,m,n] =

β

2m
[F (µ)

�,m−1,n +F (µ)
�,m+1,n] =

γ

2n
[F (µ)

�,m,n−1 +F (µ)
�,m,n+1]

(4.27)

Combining each of these alternative relations with (4.26) and setting µ = 1 gives the
desired relations

F�+1,m,n =
2�

α(� + m + n − 1)

[
αF�−1,m,n + βF�,m−1,n + γF�,m,n−1

+ H�(α)Hm(β)Hn(γ)
]
− F�−1,m,n

(4.28a)

F�,m+1,n =
2m

β(� + m + n − 1)

[
αF�−1,m,n + βF�,m−1,n + γF�,m,n−1

+ H�(α)Hm(β)Hn(γ)
]
− F�,m−1,n

(4.28b)

F�,m,n+1 =
2n

γ(� + m + n − 1)

[
αF�−1,m,n + βF�,m−1,n + γF�,m,n−1

+ H�(α)Hm(β)Hn(γ)
]
−F�,m,n−1

(4.28c)

The relations used here for differentiation and recursion of the Hankel functions apply to
any linear combination of Bessel functions of the first and second kind, including the Hankel
functions of the first and second kind. Thus the same generality applies to the relations
(4.28). In particular, one of the Hankel functions may be replaced by the Bessel function
Jν , as is required in (4.13b-c). The only requirements here are that the starting values for
the recursion are evaluated for the appropriate combination of Bessel and Hankel functions,
and that the triple product of Hankel functions H�(α)Hm(β)Hn(γ) which appears in (4.28)
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is likewise replaced by the corresponding product of the appropriate Bessel and Hankel
functions, i.e. the integrand of (4.13a,b,c) evaluated at the lower limit of integration.

Collectively the three recursion relations (4.28) can be used to evaluate the integrals F ,G,H
for any combination of the three orders �, m, n, provided suitable starting values are avail-
able. To proceed in this manner throughout a three-dimensional cube 0 ≤ (�, m, n) ≤ M it
is sufficient to evaluate the eleven starting values where the three integers have the values
000, 100, 010, 001, 011, 101, 110, 111, 200, 020, 002. However this procedure has two
important disadvantages. First, to evaluate only the required ‘two-dimensional’ combina-
tions of �, m, n in (4.18) and (4.19) it is not efficient to evaluate the ‘three-dimensional’
combinations as is required in the recursion relations. More importantly, for large values
of α, β, γ the recursion relations are unstable with substantial cancellation error occur-
ring over several successive values of the integers. (Since forward recursion is stable for
the Hankel functions it was originally thought that this problem would not be serious.
However the inhomogeneous terms in (4.28) appear to be important in this context, and
numerical tests indicate that there is a substantial loss of accuracy in the use of (4.28) for
�, m, n > O(10) unless the parameters α, β, γ = O(1).)

The recursion relations are nevertheless useful to check the subroutines used to evaluate
(4.13). Extensive tests have been made in this manner, throughout the two-dimensional
space where the three integrals (4.13) are required in (4.18-19) up to the maximum order
M = 32; with a specified Romberg tolerance (typically 10−8) the differences between the
left- and right-hand sides of the recursion relations (4.28) are consistently smaller than
this tolerance.

5. REFERENCES

Abramowitz, M., & Stegun, I. A., 1964 Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Government Printing Office, Washington and
Dover, New York.

Kim, M.-H. 1990 ‘Second-order sum-frequency wave loads on large-volume structures,’
App. Ocean Research, to appear.

Kim, M.-H. & Yue, D. K. P. 1989 ‘The complete second-order diffraction solution for an
axisymmetric body Part 1. Monochromatic incident waves,’ J. Fluid Mech. 200, 235–264.

Kim, M.-H. & Yue, D. K. P. 1990 ‘The complete second-order diffraction solution for
an axisymmetric body Part 2. Bichromatic incident waves and body motions,’ J. Fluid
Mech., 211, 557–593.

Lee, C.-H. & Newman, J. N. 1989 ‘First- and second-order wave effects on a submerged
spheroid,’ J. Ship Research, to appear.

Ogilvie, T. F. 1983 ‘Second-order hydrodynamic effects on ocean platforms,’ International
Workshop on Ship and Platform Motions, Berkeley.

22




