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Abstract

Ordinary differential equations (ODEs) are derived for the free-surface Green functions and
their gradients, in a fluid of infinite depth. The cases of harmonic time-dependence in the
frequency domain and impulsive motion in the time domain are considered separately. These
ODEs were derived originally by Clément, starting with fourth-oder equations in the time
domain and using Fourier transforms to derive a second-order ODE in the frequency domain.
In the present work a simpler procedure is followed independently in each domain, transforming
the governing Laplace equation to an ordinary differential equation. The results are consistent
with the ODEs derived using Clément’s method.

1 Introduction

The free-surface Green function is frequently used to perform computations of wave-body in-
teractions. This function is equivalent to the velocity potential of a submerged source. It can
be represented by the sum of a Rankine source and the remaining part which depends on the
boundary conditions at the free surface and bottom. The Rankine component is simply the
inverse of the distance between the field point x and the source point ξξξ in three dimensions.
It is excluded from the following discussion, which pertains solely to the additional component
required to satisfy the boundary conditions (as well as the radiation condition in the frequency
domain or initial conditions in the time domain).

If the boundary conditions on the free surface are linearized and the fluid depth is constant, or
sufficiently large to be considered infinite, the Green function can be expressed as an integral
over the relevant wavenumber space. Comprehensive summaries are given by Wehausen &
Laitone [1] (Section 13) and Linton & McIver [2] (Appendix B). In the cases considered here
the fluid depth is assumed infinite. This is a relatively simple case, but one of frequent use
in the radiation/diffraction analysis of offshore structures. This type of analysis is usually
performed in the frequency domain, using the Green function with harmonic time-dependence.
Various algorithms have been developed for computations including series expansions and multi-
dimensional polynomial approximations, as well as direct numerical integration.
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Clément [3] has shown that the impulsive Green function, with strength proportional to a
delta function in the time domain, satisfies a fourth-order ordinary differential equation (ODE)
in time. Similar ODEs are also derived in [3] for the gradient of this function. Subsequently
in [4] Clément showed by Fourier analysis that the time-harmonic Green function satisfies a
second-order ODE in the frequency. These are radical developments, which may be useful for
computations. Applications of this approach in the frequency domain are discussed by Shen
et al [5] and Xie et al [6,7]. Shen et al [5] include ODEs for the gradient of the time-harmonic
Green function, which are shown without derivations but stated to be based on the results in
[3] following a similar procedure as in [4].

In the present work a simpler and more direct derivation is presented, first for the time-
harmonic Green function and separately for the impulsive function. These derivations follow
from the fact that the Green function is a solution of the Laplace equation. The Green function
for harmonic time dependence and infinite depth is a function of only two nondimensional
coordinates, denoted here by R and Z, corresponding to the horizontal and vertical positions
of the field point relative to the image of the source above the free surface and normalized
by the wavenumber K. The derivatives with respect to Z have relatively simple forms, which
follow from the free-surface boundary condition. The derivatives with respect to R can be
related to total derivatives with respect to K. Thus the ODEs can be derived directly from
the Laplace equation, involving only derivatives of first and second order with respect to the
wavenumber. Since K = ω2/g, where ω is the frequency and g the gravitational acceleration, it
is straightforward to derive corresponding ODEs with respect to the frequency. The approach
for the impulsive Green function is similar.

The ODEs for the time-harmonic Green function are derived in Section 2, and for its gradient
in Section 3. In Section 4 these results are shown to be consistent with the ODEs in [4-7]. The
impulsive Green function and its gradient are considered in Section 5. The results are discussed
in the concluding Section 6.

2 ODEs for the time-harmonic Green function

The motion is harmonic with frequency ω and the time-dependent factor eiωt is assumed. The
corresponding wavenumber is K = ω2/g. A Cartesian coordinate system x = (x1, x2, x3) is
defined with x3 = 0 the plane of the free surface and x3 < 0 the domain of the fluid. The
source is at x = ξξξ = (ξ1, ξ2, ξ3), with ξ3 ≤ 0. The image point of the source above the free
surface is ξ‘ξ‘ξ‘ = (ξ1, ξ2,−ξ3). Cylindrical and spherical coordinates are defined as follows:

r =
√

(x1 − ξ1)2 + (x2 − ξ2)2, z = x3 + ξ3, s = |x− ξ‘ξ‘ξ‘| =
√
r2 + z2. (1)

Thus (r, z) is a cylindrical coordinate system with radius r and vertical coordinate z, with
the origin at the image of the source point and z positive upward. The spherical radius s is
the distance between the field point and image source point, with horizontal component r and
vertical component z. Nondimensional coordinates are defined by

R = Kr, Z = Kz, S = Ks. (2)
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With these definitions the Green function can be defined in the form (cf. [1], equation 13.17,
or [2], Appendix B.3)

G(x; ξξξ) =
1

|x− ξξξ|
+

1

|x− ξξξ‘|
+KF (R,Z), (3)

where

F (R,Z) = 2
∫ ∞
0

dk

k − 1
ekZJ0(kR) (4a)

= −πeZ (H0(R) + Y0(R) + 2iJ0(R))− 2
∫ |Z|
0

eζ+Z
(
R2 + ζ2

)−1
2 dζ. (4b)

Here J0 and Y0 are the Bessel functions of the first and second kind and H0 is the Struve
function. The contour of integration in (4a) is defined to pass above the pole k = 1 in the
complex k−plane, to satisfy the radiation condition.

Since the Green function satisfies the Laplace equation, it follows that

∇2F = Frr + (1/r)Fr + Fzz = K2
(
FRR + (1/R)FR + FZZ

)
= 0. (5)

The following relations are used to evaluate the partial derivatives in (5):

FZ = F + 2/S (6)

FZZ = FZ − 2Z/S3 = F − 2Z/S3 + 2/S (7)

FRZ = FR − 2R/S3 (8)

KFK = RFR + ZFZ (9)

K2FKK = R2FRR + 2RZFRZ + Z2FZZ

= R2FRR + 2RZFR − 4R2Z/S3 + Z2FZZ . (10)

Note that subscripted coordinates (R,Z) denote the partial derivatives, whereas subscripts of
the wavenumber K denote the total derivatives with respect to this parameter. (6) can be
derived most easily from (4b), or alternatively from (4a) using the integral relation for 1/S (cf
[1], equation 13,12). (7-8) follow directly by differentiation of (6). (9-10) simply express the
total derivatives in accordance with the definitions of R and Z and the fact that F depends
only on these two nondimensional coordinates.

Using (9-10) first to replace FR and FRR in (5),

(R2/K2)∇2F = K2FKK + (1− 2Z)KFK + 4R2Z/S3

−Z (1− 2Z)FZ +
(
R2 − Z2

)
FZZ = 0. (11)

Using (6-7) to replace FZ and FZZ gives the ODE

K2FKK + (1− 2Z)KFK +
(
S2 − Z

)
F =

−4R2Z/S3 + 2Z (1− 2Z) /S + 2Z
(
R2 − Z2

)
/S3 − 2

(
R2 − Z2

)
/S. (12)

After simplifying the right-hand side the final form for the ODE is given by

K2FKK + (1− 2Z)KFK +
(
S2 − Z

)
F = −2S. (13)

Alternatively, in terms of the frequency ω =
√
gK,

Kd/dK = 1
2
ωd/dω, K2d2/dK2 = 1

4
ω2d2/dω2 − 1

4
ωd/dω.

Thus
1
4
ω2Fωω + (1

4
− Z)ωFω +

(
S2 − Z

)
F = −2S. (14)
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3 Gradient of the Green function

Similar results can be derived for the derivatives U = Fr and V = Fz, which usually are required
for computations. For U = KFR the relations analogous to (6-10) are

UZ = U − 2KR/S3 (15)

UZZ = UZ + 6KRZ/S5 (16)

URZ = UR + 6KR2/S5 − 2K/S3 (17)

KUK = RUR + ZUZ + U (18)

K2UKK = R2URR + 2RZURZ + Z2UZZ + 2RUR + 2ZUZ (19)

If (5) is differentiated with respect to R it follows that

K2
(
FRRR + FRR/R− FR/R2 + FRZZ

)
= K

(
URR + UR/R− U/R2 + UZZ

)
= 0 (20)

Multiplying (20) by R2/K and using (15-19) gives the ODE

K2UKK − (1 + 2Z)KUK + (S2 + Z)U = 2KR/S (21)

or
1
4
ω2Uωω − (Z + 3

4
)ωUω +

(
S2 + Z

)
U = 2KR/S. (22)

The ODE for V can be derived directly from (13), since

V = KFZ = KF + 2K/S. (23)

After substituting F = V/K − 2/S in (13) and multiplying by K,

K2VKK − (1 + 2Z)KVK +
(
S2 + Z + 1

)
V = 2K (1 + Z) /S (24)

or
1
4
ω2Vωω − (Z + 3

4
)ωVω +

(
S2 + Z + 1

)
V = 2K (1 + Z) /S. (25)

4 ODEs for Clément’s form of the Green function

In [4] the Green function is represented in the alternative form

G(x; ξξξ) =
1

|x− ξξξ|
− 1

|x− ξ‘ξ‘ξ‘|
+ F̃ . (26)

Comparing (26) with (3) it follows that F̃ = KF+2K/S. Since this is the same relation as (23),
it follows that F̃ satisfies the ODEs (24-25). Except for the normalization of the coordinates
(25) is identical to the ODE derived by Clément ([4], equation 11).

The corresponding components of the gradient are

Ũ = F̃r = KU − 2K2R/S3,

Ṽ = F̃z = KV − 2KZ/S3.
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Using these relations with (21-22) and (24-25) gives the results

K2ŨKK − (2Z + 3)KŨK +
(
S2 + 3Z + 3

)
Ũ = −6(1 + Z)K2R/S3 (27)

K2ṼKK − (2Z + 3)KṼK +
(
S2 + 3Z + 4

)
Ṽ = (2R2 − 4Z2 − 8Z)K2/S3 (28)

and
1
4
ω2Ũωω − (Z + 7

4
)ωŨω +

(
S2 + 3Z + 3

)
Ũ = −6(1 + Z)K2R/S3 (29)

1
4
ω2Ṽωω − (Z + 7

4
)ωṼω +

(
S2 + 3Z + 4

)
Ṽ = (2R2 − 4Z2 − 8Z)K2/S3. (30)

Except for the normalization of the coordinates (28) and (30) are the same as the results given
by Shen et al ([3], equations 6-7).

5 ODEs for the time-domain Green function

Using the dimensional coordinates (1), the Green function for impulsive motion in the time
domain is defined by (cf. [1], equation 13.49)

G(x; ξξξ, t) =
δ(t)

|x− ξξξ|
− δ(t)

|x− ξ‘ξ‘ξ‘|
+H(t)f(r, z, t). (31)

Here t denotes time, δ(t) is the Dirac delta function, H(t) the Heaviside step function, and

f(r, z, t) = 2
∫ ∞
0

√
gk sin

(
t
√
gk
)

ekzJ0(kr)dk (32a)

= 2r−3/2
∫ ∞
0

√
gκ sin

(
t
√
gκ/r

)
eκz/rJ0(κ)dκ. (32b)

The variable of integration κ = kr is used in (32b) to avoid differentiation of the Bessel
function. This integral depends only on the two nondimensional parameters gt2/r and z/r,
but it is simpler in the following analysis to continue using the dimensional coordinates. From
(32a) it follows that

ftt = −gfz, ftttt = g2fzz, (33)

and, from (32b),
rfr = −3

2
f − zfz − 1

2
tft = −3

2
f + (z/g)ftt − 1

2
tft. (34)

Differentiation of (34) gives the relation

r2frr + rfr = −3
2
rfr + (rz/g)frtt − 1

2
rtfrt

= 9
4
f + 7

4
tft +

[
1
4
t2 − 4(z/g)

]
ftt − (tz/g)fttt + (z/g)2ftttt. (35)

Using (33) and (35) in the Laplace equation (5) gives the result

r2∇2f = (s/g)2ftttt − (tz/g)fttt +
[
1
4
t2 − 4(z/g)

]
ftt + 7

4
tft + 9

4
f = 0. (36)

This is the same ODE derived by Clément [3], except for the factor g which is omitted in the
normalization used in [3].
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The components of the gradient w = (fr, fz) are

w =

(
u

v

)
= 2

∫ ∞
0

√
gk sin

(
t
√
gk
)

ekz
(
−J1(kr)
J0(kr)

)
kdk (37a)

= −2r−5/2
∫ ∞
0

√
gκ sin

(
t
√
gκ/r

)
eκz/r

(
−J1(κ)

J0(κ)

)
κdκ. (37b)

The following differential relations are derived from (37a) and (37b) in place of (33) and (35):

wtt = −gwz, wtttt = g2wzz, (38)

r2wrr + rwr = −5
2
rwr + (rz/g)wrtt − 1

2
rtwrt

= 25
4

w + 11
4
twt +

[
1
4
t2 − 6(z/g)

]
wtt − (tz/g)wttt + (z/g)2wtttt. (39)

Thus u and v both satisfy the same differential relations (38-39). Recalling the extra term in
(20) which only affects the equation for u, it follows from the Laplace equation that

(s/g)2utttt − (tz/g)uttt +
[
1
4
t2 − 6(z/g)

]
utt + 11

4
tut + 21

4
u = 0. (40)

and
(s/g)2vtttt − (tz/g)vttt +

[
1
4
t2 − 6(z/g)

]
vtt + 11

4
tvt + 25

4
v = 0. (41)

These ODEs are consistent with the corresponding equations (6.5) and (6.8) in [3]. The proce-
dure described above explains the similarity of the two equations, which was noted in [3]. The
same similarity is evident in the frequency domain, comparing the left-hand sides of (21) and
(24) or (22) and (25).

6 Discussion

The principal contribution of this work is a simple and more transparent derivation of the
ODEs for the free-surface Green functions, which were derived originally by Clément [3,4] and
extended for the gradient in the frequency domain by Shen et al [5]. In those works the analysis
was performed first in the time domain, leading to fourth-order ODEs with respect to time [3],
and then transformed to the frequency domain using Fourier analysis. Here a more direct
approach is followed independently for the frequency and time domains.

In the frequency domain second-order ODEs with respect to the wavenumber are derived
from the Laplace equation, using differential relations for the vertical and radial derivatives.
The corresponding ODEs follow with respect to the frequency. The Green function used for
the analysis in Sections 2 and 3 assumes a positive image source above the free surface, as in
(3). In [4-7] a negative image source is used, as in (26), and the factor K in the third term of
(3) is included in the function F̃ . These differences are accounted for in Section 4, to confirm
that the ODEs derived here are equivalent to those in [4-7].

The same approach is followed in Section 5 for the impulsive Green function in the time
domain, resulting in the fourth-order ODEs derived originally by Clément [3]. The differential
relations are more complicated compared to the frequency domain, due to the second time-
derivative in the equation for the vertical derivative. This is the principal reason that the
ODEs are of order four, compared to second-order in the frequency domain.
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Like the previous work in [3-7] our analysis is restricted to the case of infinite depth. This is
an important restriction in many practical cases. The present derivations rely on the properties
that the Green functions depend on only two nondimensional parameters, and that the vertical
derivative can be evaluated from the function itself in the frequency domain, or from the second
time-derivative in the time domain. These relations for the vertical derivative correspond to
the boundary conditions on the free surface, but in these cases they are valid throughout the
fluid domain. In a fluid of finite depth the Green function includes an additional parameter
proportional to the depth, and the vertical dependence is more complicated. Thus it is unlikely
that our approach can be extended to a fluid of finite depth. This may explain the absence of
any similar extension based on the approach used in [3-7]. Also, as in [3], the present derivations
rely on the classical solutions for the Green functions, representated by the integrals in (4) and
(32), to derive the differential relations (6-10) and (33-35). This precludes the possibility of
deriving the ODEs directly from the original boundary-value problems.

After completing this work the author was informed by one of the reviewers that the thesis
by Xie [8] includes a similar derivation in the time domain. In that work the ODE is derived
from the Laplace equation and relations equivalent to (33), without explicitly using (34). In-
stead a pair of ‘natural variables’ (µ, τ) are used to replace the coordinates (r, z) and time
t; transformation of the required derivatives leads to a fourth-order ODE with respect to the
variable τ , which is equivalent to (36).
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